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Abstract 
In Electric Dipole Moment search experiments with 

polarized beams the coherence of spin oscillations of 
particles has a leading role [1]. The decoherent effects 
arise due to spin tune dependence on particle energy and 
particle trajectory in focusing-bending fields. They are 
described through the n-th order spin tune aberrations. 
Since the first order is suppressed by RF field, the second 
order begins to play a crucial role. It depends on the orbit 
lengthening and on the odd order field components. We 
consider the spin decoherence effects and methods of 
their compensation in different channels, electrostatic, 
magnetostatic linking the decoherence effects with 
common characteristics such as the momentum 
compaction factor, the chromaticity and others.  

SYNCHROTRONOUS PRINCIPLE 
The basic “synchrotronous acceleration principle” of 

Veksler and McMillan is formulated by simple system 
equation: 
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where 
sp

p
  is momentum deviation from equilibrium 

synchronous level of momentum sp-pp  ,   is phase 

deviation from synchronous phase 0s  (no 
acceleration in storage ring),   is sleep-factor, E  is full 

energy,   is relative velocity, rfeV  is energy gain per 

turn with rfV  voltage gap, revrf hf 2  is angular 

frequency of RF field, h  is a harmonic number, 

revrev Tf /1  is revolution frequency. 
The first equation of system (1) comes directly from 

“synchrotronous acceleration principle”: particle having 
shorter revolution time arrives earlier and gets in an 
earlier phase of the RF field: 
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In the first approach change of orbit length C  versus 
momentum deviation is defined by   0/ CC , and 
we can write: 
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Slip factor 2
0 /1    is introduced by ratio 

between revolution time and momentum deviations: 

 


rev

rev

T

T
       (4) 

Obviously, in case of bunched beam the revolution time 
deviation averaged over one synchrotron oscillation is 
zero. In first approach it follows from solution of (1). 
However using the higher expansion in power of 
momentum compaction factor   10  and 

velocity ...])/(/1[)( 21  
ssss vvvvvvv  the 

deviation of  time revolution deviation can be represented 
in form: 
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In addition, we must include to the orbit lengthening 
value  LL /  due to the betatron motion: 
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Then the longitudinal motion equations can be written as: 
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Let us assume that 1 , that is 1cos  , and write 

the equation for momentum deviation   as: 
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From (6) we see that average value 0/  revrev TT  is 

not zero, and it is defined by  ,, 10  and  LL / : 
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As follows from equation (8) the orbit lengthening 
must be compensated by an equilibrium momentum level 
rising to be consistent with the basic “synchronous 
acceleration principle”. Solving (8) using asymptotic 
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methods [2] we can define an influence of the betatron 
oscillation, the square term of momentum compaction 
factor 1    and the slip factor   onto the equilibrium 

level energy shift eq : 
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Expression (10) means that the equilibrium momentum 
is different for every particle in bunch.  

 
                         (a)                (b) 
Figure 1: Phase trajectory in longitudinal plane for initial 
coordinates x=0, y=0 (a) and x=3 mm, y=0 (b). 

 

 
 

Figure 2: Phase trajectory in longitudinal plane for 
01   and 01  without betatron oscillation. 

 
As example Fig. 1 shows the results of COSY Infinity 

calculation in electrostatic ring [3] when the equilibrium 
momentum level rises up due to betatron motion. In the 
same time due to the non-zero second order momentum 
compaction factor 01   and  2)/( svv  phase 
trajectories lose symmetry in the longitudinal plane in 
direction of the momentum, and thus lead to a shift of the 
equilibrium momentum value. Figure 2 shows the cases 
of an axial particle with zero and non-zero second order 
momentum compaction factor. The effect with 01   is 
similar to sextupole effect in the transverse plane when 
the phase trajectory begins to take a shape of a triangle.  

ORBIT LENGTHENING  

Betatron Motion  
Now we define parameters 10 ,  and )/( LL on the 

basis of simple geometric considerations. Figure 3 shows 
the orbit lengthening due to momentum spread   and 
betatron oscillation )/( LL . Let us begin from the case 

when the orbit lengthening arises due to betatron 
oscillation (Fig. 3a). Assume that the particle has 

parameters   xx ,  at a time. Due to a larger 

radius  x  the orbit is longer by factor   /)x(   

and due to x  is longer by factor xcos/1 . Together 

with the vertical motion the factor of lengthening is 

cos/1 , where 22
 yx  .  

 
            (a)                            (b) 
Figure 3: Orbit lengthening due to betatron oscillation (a) 
and momentum spread (b)  

 
Then the orbit lengthening due to betatron oscillation is: 
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Ryxyx //1 ,,    the orbit lengthening due to the 

betatron motion is: 
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Momentum Deviation 
Now let us go back to the orbit lengthening due to the 

momentum deviation. For that we will appeal to figure 
3b. All notations of variables are introduced in 
accordance with this figure. First of all we define linear 
and angular dispersion: 
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In arbitrary point along dds  : 

  ds
DD

dDDdl 







 2102

101 1 





 , 

dsD
DD

Ddldl







 












2
0

210

2
012

)(
2

1
11

)(1








  (13) 

As a result we have: 
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Thus, the orbit lengthening due to the momentum 
deviation is:  
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In result we have the equilibrium momentum spread 
due to the betatron motion and non-zero second order 
momentum compaction factor: 
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ORBIT LENGTHENING AND SPIN 
DECOHERENCE 

As we know the spin tune Gs   . If the equilibrium 

energy eq  depends on the particle parameters the spin 

tune spread for tN  turns has incoherent spread: 

teqs NG   22   (17) 

It reduces spin decoherence time. For example, let us 
consider the case with the spin decoherence time limited 
by 1000 seconds (~ 910 turns) and 

111072/rad 1/  teq GN . Then using 

expression (10) we can define limit for momentum 
spread: 
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In COSY ring 2.00  , 248.1s , 21   taking 

zero contribution from betatron motion ( 0~,yx ) RMS 

momentum spread should not exceed the value 
6108 m .  Reducing  the second order of MCF up 

to 01.01   we get 5102 m . In order to exclude 

completely the momentum spread influence on the orbit 
lengthening the coefficient in (10) has to be zero 

0/1/ 42
01  ss  .  (19)  

Now let us estimate the restriction for the emittance 
value: 
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In COSY ring taking 510m  the emittances 

should be 4.1, rms
yx mm mrad. Thus, we can conclude 

that contribution to the spin tune decoherence is the same 
for mrad mm 1xyrms  and 510rms . 

SEXTUPOLE CORRECTION OF ORBIT 
LENGTHENING 

Let us consider single sextupole effecting on the orbit 
lengthening. The second order momentum compaction 

factor plays the crucial role in the orbit lengthening due to 
momentum and simultaneously it depends on normalized 
sextupole strength   22 /2/1 xBBS ysext    as 
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We can correct 1  up to required value 
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Simultaneously the sextupole affects on the orbit 
lengthening directly: 
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Based on (11,23) a simple solution follows: 
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Together with 1  correction three families of 
sextupoles are required, and they should be placed in 
locations with maximum/minimum value of  0D  and 

yx,    functions. 

FEATURES OF ELECTROSTATIC RING 
In electrostatic deflector due to converting of kinetic 

energy to potential the velocity spread vv / reduces by 
some factor vF  dependent on the optics with almost 
unchanged trajectory. Then for arbitrary particle we have 
additional factor vF/1  in expression (6): 
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It means in order to compensate the decoherence effect 
coming from momentum spread we have to adjust 1 by 

factor vF  smaller. Simultaneously, we take note that the 

slip factor can even change sign when 2
0/1 vF , and 

behavior of beam will be like at higher critical energy, in 
particular, the synchronous phase change by  . 
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