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Abstract

In this article there is described an analytical approach

to describe the self-field of two- and three dimensional el-

lipsoidal presentation of space charge distribution. The

corresponding results can be evaluated in both numerical

and the analytic presentation for some model distributions

of charge. The corresponding results can be embedded in

the Lie formalism used to describe the map for the beam

dynamics. The corresponding linear and nonlinear maps

are evaluated in terms of the matrix representation of the

evolution operator of the beam. Appropriate solutions for

nonlinear differential equations are based on a prediction-

correction method (the converging recursive procedure).

These solutions are compared with the Vlasov equation so-

lutions. A special software package for the described ap-

proach is presented.

INTRODUCTION

It is well known that the envelope equations for continu-

ous beam with uniform charge density and elliptical cross-

section were first derived by Kapchinsky and Vladimirsky

(KV). This very useful result has been put into different

approaches to charged beams description with any charge

distribution with elliptical symmetry. More over this is

also true in practice for three dimensional bunched beams

with ellipsoidal symmetry. The utility of this rms approach

was first demonstrated by Lapostolle for stationary distri-

butions. Subsequently, Gluckstern [1] proved that rms ver-

sion of KV-equations remain valid for all continuous beams

with ellipsoidal form. Here we describe the approach based

on these ideas for description of nonlinear space charge

forces using ellipsoidal presentation of a space charge dis-

tribution. The purpose of analytical models is connected

with necessity to improve the efficiency of numerical cal-

culations (especially with the use of parallel and distributed

computing systems), and on the other with providing a de-

tailed analysis of the impact on the beam dynamics of vari-

ous parameters (both the control system itself and the beam

parameters). In this paper, we describe an approach to con-

struct analytical expressions for the electric field produced

by the beam particles. These expressions may be derived

using the matrix formalism for a trajectory analysis [2, 3],

and in terms of the envelope of the beam and/or the dis-

tribution function (in accordance with the Vlasov-Maxwell

equations) [4].
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THE FORMS OF BEAM DESCRIPTION

In this paper, we develop the main conditions for the

field, generated by the beam, as set out in [5], but tak-

ing into account the three-dimensional distribution of space

charge in a bunched beam. It should be noted that a sim-

ilar approach in the two-dimensional case allowed us to

not only build a general analytical expression for a wide

class of distributions of the beam, but also to integrate the

expressions in the appropriate implementation of the per-

turbation theory, commonly used in beam physics [5]. In

this paper, we focus on how the use of the matrix formal-

ism [3] for Lie algebraic methods [6] in the event of cal-

culating the self-field of the beam. This approach allows

not only to carry out numerical experiments, but also to

provide accurate analysis of the impact of different effects

with the use of ready-made modules in accordance with the

LEGO-objects (see, eg, [7]). As in [3] we use the method

of calculation in symbolic form the components of the ten-

sion in two dimensions, for various models of the distri-

bution of the transverse charge density ρ(x, y), where x, y
are transverse coordinates in according to the Ferrers’a in-

tegrals technology [8]. As a result, the expressions for the

electric field of the beam we form the total field as the sum

of external and the self-field of the beam, which can be

written as

E(x, y, s) ==

∞∑
k=1

(
Ek

out(x, y, s) +Ek
self(x, y, s)

)
, (1)

where Ek contains the members of k-th order according

the variables x, y, correspondingly. Similar presentation

allows us to embed the total field in the general equation

describing the dynamics of the particles in accordance with

the matrix formalism

dX

ds
=

∞∑
k=1

(
P
[1k]
out (s) + P

[1k]
self (s)

)
X[k], (2)

where X[k] the vector of k-th phase moments (dimX[k] =(
n+k−1

k

)
[3].

1. Trajectory analysis. In this case the beam is presented as

a particles assemble and can be written using the follow-

ing matrix X
N = {X1, . . . ,XN}, where Xk is a phase

vector of k-th particle and N is a number of particles.

2. Beam envelope dynamics. In this case the beam is de-

scribed in the terms of envelope matrices [3].
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3. Distribution function dynamics. In this case one present

the beam in the terms of a distribution function, which

satisfies to the Maxwell-Vlasov equations system.

THE SOLUTIONS OF MOTION
EQUATIONS

The above mentioned types of beam presentations al-

low us to write the corresponding solutions in the universal

form using the matrix formalism for Lie maps [3]. The so-

lution of eq. 2 can be written in the form

X(s) =

∞∑
k=1

R
[1k](s|s0)X[k]

0 , (3)

where X0 = X(s = 0) and matrices R
[1k] (dimR

[1k] =
2n × (

n+k−1
k

)
) under k ≥ 2 describe the nonlinear mem-

bers in the our expansion of the desired solution of motion

equation (2).

The solution (3) can be used for creation of all necessary

objects for our approach. We should note that the proce-

dure of beam evolution modeling (using the space charge

forces) can be written in the following terms of beam de-

scriptions. The first type of beam description leads us to

X(s) =
∞∑
k=1

R
[1k](s|s0)X[k]

0 . (4)

The usage of envelope beam presentation allows us to write

expanded envelope matrices Sik, i, k ≤ 1:

Sik(s) =

∞∑
l=i

∞∑
j=k

R
il(s|s0)Slj

0

(
R

kj(s|s0)
)T

, (5)

where Sik(s0) the initial envelope matrices Sik(s0) can

be calculated according to

Sik(s0) =

∫
M(s0)

f(X, s0)X
[i]

(
X[k]

)T

dX, (6)

where f(X, s0) is a distribution function for our beam at

the moment s0, one can evaluate the matrices Sik up to

necessary order of truncation in according to (5).

The third case leads us the following form of the desired

solutions

f(X, s) = f0
(M−1 ◦X)

=

∞∑
k=0

M−1 ◦ (
F0

k

)T ·X[k]

=

∞∑
k=0

(
F0

k

)T ·
∞∑
l=k

T
kl ·X[l] =

∞∑
k=0

FT
k ·X[k],

F0 = F0
0, Fk =

k∑
l=1

(
T
kl
)T

F0
l , k ≥ 1.

and the matrices Tkl can be evaluated from matrices Rkl

using the well known generalized Gauss algorithm for in-

version of block matrices.

Figure 1: The scheme of construction of self-consistent beam

particle evolution

THE SOLUTIONS OF MOTION
EQUATIONS IN THE PRESENCE OF

SPACE CHARGE FORCES
The above described forms of beam presentation usually

are used for beam description both without influence of the

self-field of the beam and in the presence of space charge

forces. In this case we should use the special self-consistent

method [3] and Fig.1. Let consider the basic features of this

method on the example of the envelope matrices. S t e p 0.

At first we should calculate Sik
0 , i, k = 1, N according to

the following formulae (here N is an order of series trun-

cation):

Sik
0 =

∫
M0

f0(X)X[i]
(
X[k]

)T

dX.

As a matrix form A0 let choose
(
S11

0

)−1
or the matrix

S−1
0 , if the initial set M0 is a ellipsoid with boundary

XT
0 S

−1
0 X0 = ε. Then we constraint an approximating

function ϕ0(κ
2
0) ≈ f0(X0), κ

2
0 = XT

0 A0X0.

S t e p 1. We calculate the following block-matrices

P
1k (Bext, Eext, s):

N
1k
1 = P

1k
(
Bext,Eext, s

)
.

S t e p 2. Compute the electrical field in the form Eself =
E

(
ϕ0(κ

2
0)
)

according to some formulae (for example, see

[3]) for appropriate model functions.

S t e p 3. Compute the block-matrices for motion equation

P
1k(Eself , s): N1k

2 = P
1k

(
Eself , s

)
.

S t e p 4. Compute the block-matrices R
ik for the corre-

sponding solution i ≤ k ≤ N ,

R
ik
1 = R

ik
(
s | s0;

{
N

1l
1

})
, l = 1, k,

R
ik
2 = R

ik
(
s | s0;

{
N

1l
2

})
, R

ik
0 = R

ik
1 + R

ik
2 .

S t e p 5.Compute the block-matrices for the corresponding

the envelope matrices Sik
0 :

Sik
0 =

∞∑
l=i

∞∑
j=k

R
il
0S

lj
0

(
R

jk
0

)T
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S t e p 6. We computer the block-matrices for virtual
changing of beam parameters in the evolution process

Sik
1 = αSik

0 + (1− α)Sik
0 , 0 < α < 1.

S t e p 7. We check the conditions (or similar, see [3])

‖Sik
1 −Sik

0 ‖c < εik. (7)

With due fulfilment of inequalities (7) the process is fin-

ished. In another case we count Sik
0 = Sik

1 and proceed to

the the step 8.

S t e p 8.We find an approximating function (see [3])

ϕ
(
κ

2
)

for the function f(X, s):

ϕ
(
κ

2
) ≈ f0

(M−1
0 ◦X0

)
= f0

( ∞∑
i=1

T
1i
0 X

[i]
0

)
.

We suppose ϕ0

(
κ

2
)
= ϕ

(
κ

2
)

and proceed to the Step 2.

AN APPROXIMATION OF THE
SELF-CONSISTENT POTENTIAL

The above described algorithm should be controlled us-

ing some additional models for space charge description.

As an example of similar additional model we consider the

Poisson’s equation for the self-consistent potential of the

beam in two dimensional transverse space

∂2Vself

∂x2
+

∂2Vself

∂y2
= −

∫
f(x, x′, y, y′, s) dx′ dy′, (8)

where f(x, x′, y, y′, s) is the Vlasov function for our beam.

Let H(x, x′, y, y′) = m2c4 + mx′2+y′2

2 + qV(x, y) be a

Hamiltonian for our beam, V = Vout + Vself , Vout – is

a potential of an external field and Vself – is a potential

of an self-consistent field generating by our beam. After

integrating we can write

ρ(x, y) =
2πqf0
m0γ

(
H0 −m2

0γ
2c4 − qV(x, y)) , (9)

and V(x, y) is a potential of the beam. Let introduce

U = α(H ′
0 − qV), α = − 2πqf0

ε0m0γ
(10)

and the equation (9) can be rewritten in the form

∂2U
∂x2

+
∂2U
∂y2

= k2U , (11)

where k2 = −αq = −2πq2f0/ (m0ε0γ) ≤ 0. In the ellip-

tical coordinates (λ, μ we can write

1√
g

[
∂

∂λ

(√
g

gλλ

∂

∂λ

)
+

∂

∂μ

(√
g

gμμ

∂

∂μ

)]
U = k2U , (12)

Introducing new variables R2 = a2 + λ, t2 = −b2 − μ
(here b2 + λ2 = b2 − a2 + R2, a2 + μ = a2 − b2 − t2,

λ − μ = R2 + t2 + b2 − a2, −b2 > μ > −a2, 0 < t2 <

Figure 2: The density of the stationary charge distribution:

1 — ka = 1, 2 — ka = 5, 3 — ka = 10, 4 — ka = 20, 5 —

ka = 40.

a2−b2) and applying the method U(R, t) = V(R)Φ(t) one

can obtain two

d2V
dR2

+
R

R2 + b2 − a2
dV
dR

−
(
k2 +

α

R2 + b2 − a2

)
V = 0,

(13)

d2Φ

dt2
+

t

t2 + b2 − a2
dΦ

dt
−
(
k2 − t2k2 − α

t2 + b2 − a2

)
Φ = 0.

We should note that after the transition to polar coordinates

(t2 �→ 0) we obtain the well known Bessel equation of

zeroth order

d2V
dR2

+
1

R

dV
dR

− k2 V = 0. (14)

Where a is a beam radius, and the second equation in

(13) will be satisfied identically. The Fig.2 shows the pro-

files of stationary charge distribution (circular beam ap-

proximation) for the model “water bag” for different values

of the parameter intensity k a.
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