WEPEA050

Proceedings of IPAC2013, Shanghai, China

ANALYSIS OF POSSIBLE FUNCTIONAL FORMS OF THE SCALING
LAW FOR DYNAMIC APERTURE AS A FUNCTION OF TIME*

M. Giovannozzi, F. Lang, R. De Maria, CERN, Geneva, Switzerland

Abstract

In recent studies, the evolution of the dynamic aperture
with time has been fitted with a simple scaling law based on
a limited number of free parameters. In this paper, different
approaches to improve the numerical stability of the fit are
presented, together with a new functional form.

INTRODUCTION

The time-dependence of the dynamic aperture (DA), i.e.
the region of phase space that is stable over a fixed number
of turns, has been proposed [1, 2] to satisfy

b

D(N) = Do + Tog (N
where N represents the turn number and x, D, b are free
parameters. Such a scaling is compatible with fundamental
theorems in non-linear dynamics, such as the KAM [3] and
Nekhoroshev [4, 5] theorems. Furthermore, this scaling has
been used to model the time-evolution of beam losses in
hadron machines without [6] and including beam-beam ef-
fects in the weak-strong regime [7], as well as the evolution
of the luminosity in the LHC [8].

The data used are obtained from the SixTrack code [9],
applying the standard protocol for tracking a LHC lattice
representing the top energy configuration, including mag-
netic errors, and beam-beam effects in the weak-strong
regime (see Ref. [7] for more details). Sixty realisations
(called seeds below) of the magnetic errors have been con-
sidered, with a bunch charge of 0.02 x 10! protons.

(M

EVALUATION OF FIT PARAMETERS
Obtaining Values for k

Difference Ratio Upon taking a difference ratio at turn

times N7, No, N3 the parameters D, and b are eliminated
D(N1) — D(Na) _ 1 — [log (N1)/log (N2)]"

D(N1) — D(N3) 1 — [log (N1)/log (N3]"

2

For fixed N; the LHS of Eq. (2) is then evaluated for all
combinations No, N3 > N, Ny # N3 and fitted to the
RHS of Eq. (2). Varying N; yields a curve K = k(Ny)
and a corresponding curve for the residuals of the fits. Two
different approaches are then used to obtain a value for .

1. A model K = const. is fitted through k = k(IN7)
including an error-weighting (labelled as method 3).

*The HiLumi LHC Design Study is included in the High Luminosity
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2. The value of kK = k(Np) is chosen that gives the
smallest residuals in the fit of the LHS of Eq. (2) (la-
belled as method 2).

Direct Fit with Varying « Fixing the value of x, one
can evaluate (1) with only D, and b as free parameters. By
varying  the residuals of the fits are obtained as a function
of k [6], and the value of x is chosen that minimises the
residuals.

Additional Methods for Evaluating [}, and b

Once a value for « is determined, two more ways of ob-
taining D, and b are investigated.

Obtaining b by Differences in DA Values Taking the
difference in DA values at turn numbers N7 and N, yields:

D(N1)~D(Nz) = b { log(N1)] ™" = [log(N2)] "} (3)
A value for b can be computed in the following two ways:

1. Evaluate Eq. (3) for all Ny # N> and compute the
error-weighted average (labelled as method [3).

2. Fitthe RHS of Eq. (3) directly to the LHS with N; and
Ns as the independent variables and b as the fitting
parameter (labelled as method ).

Obtaining D, by Ratio of DA Values
the procedure for b above, consider the ratio:

Analogous to

D(Ny)
D(N>)

_ Dao/b— [log(N))"" W
Do/ = [log(N)] ™~

from which the value of D, can be derived as a function
of b, N1, N». Two approaches of determining D, are:

1. Replace b in the expression of D, from (4) by the
corresponding solution of (3) to yield a value for
D+ (Ny, N3), and compute the error-weighted aver-
age (labelled as method ).

2. Fit Eq. (1) to the data with x and b fixed and D, the
fitting parameter (labelled as method ¢).

RESULTS
k Values from Different Methods

Fig. 1 shows the distributions of the values of x for each
method. There is a general trend for x to lie in an inter-
val spanning a factor of at least two around x = —2, with
outliers. While all methods yield similar results, method 1
produces a systematically slightly different value of x com-
pared to the others.
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Figure 1: Distributions of x values for different methods.

D, Values from Different Methods

The results for D, from the different methods are plot-
ted in Fig. 2. Generally the different methods seem to give
results of a similar order of magnitude, with typical varia-
tions being a few percent only. Nonetheless, the associated
errors are increasing in size when moving from method a to
method b and ¢. One can conclude that all the methods for
determining x and D, generate compatible results. More-
over, D, can be determined in a rather robust way inde-
pendently of the details of the fit procedure.
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Figure 2: Distributions of D, values and distributions
from different methods.
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b Values from Different Methods

The analysis of the distributions of b for the various
methods (see Fig. 3) seems to indicate that the critical pa-
rameter is the way & is determined. In fact, method 1 pro-
vides the narrower distribution even though all methods are
affected by huge tails towards more negative values of b.
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Figure 3: Distributions of b values from different methods.

Agreement Between Data and Fitting Methods

In Fig. 4 the DA values from the data are compared to
the different fitting methods for a typical seed. The figure
shows that the various methods yield comparable results
for the time dependence of the DA values, which are com-
patible with the data.
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Figure 4: Numerical data and fit curves for seed 1.
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ANALYSIS OF DIFFERENT MODELS

The analysis reported so far indicates that D is rather
stable, while x and b are varying much more, in particular
b. Moreover, as both x and b are part of the logarithmic
dependence of DA a sort of compensation between them
cannot be excluded, thus inducing large fluctuations over
the seeds. Of course, there could be also the presence of a
residual dependence of b, e.g., on .

In Fig. 5 the values of log |b| are plotted as a function
of x, showing a clear linear correlation. This feature is
independent on the fit method.
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Figure 5: log |b| as a function of « from method 1, c.

Therefore, one concludes that the relationship between b
and & is of the form:

log|b| = log |bo| + b1k b= boe’". (5)

The weighted average of the fit parameters by, b; from
various methods is given by log |by| = 1.71 &+ 0.05 and
by = 2.97 £ 0.02. Therefore, the DA scaling model might
be better described in the following form:

b
[log (v ™)

This new model has been applied to the same data set. As-
suming b; = 3 one obtains the results shown in Fig. 6 for
the parameters «, D and by, respectively. The new model
yields results for x and D that are in good agreement with
the old one, but that the value of by is much more stable
than the old fitting parameter b.

D(N) = Dy, + (6)

CONCLUSIONS

A detailed analysis of various approaches to fit the pro-
posed scaling law (1) has been performed using a large
number of numerical simulations. The original method
used in Ref. [6] seems to perform better that the others. The
analysis substantiates the validity of the dynamic aperture
scaling law, but suggests a more suitable formulation:

b
[log (v )]

For this new form the parameters D, and x show a sta-
ble behaviour in agreement with the initial formulation of
ISBN 978-3-95450-122-9
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Figure 6: Distributions: s, D, by for new and old models.

the DA scaling model, whereas the new parameter b ex-
hibits a much more stable behaviour than b in the form (1).
In the applied fitting method the parameter b; was given the
value 3, which was obtained from linear fits of log |b| as a
function of x. Further investigation is necessary in which
this new revised form of the DA scaling law is applied to
more data sets to determine whether the parameter b; can
be assumed to be a constant.
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