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Abstract

SixTrack is a general purpose 6D thin lens tracking code

used for dynamic aperture studies. In the high luminos-

ity large hadron collider (LHC) upgrade it is proposed that

crab cavities are used to enhance the luminosity. In this

study, for the current proposed optics, we consider the

use of radio frequency multipoles (RFM) and Taylor maps

(TM) as methods to simulate crab cavity elements in the

lattice.

HIGH LUMINOSITY LARGE HADRON

COLLIDER

The LHC is a 27 km synchrotron with a design centre of

mass energy of 14 TeV. The purpose of the high luminosity

upgrade (HL-LHC) is to upgrade the peak luminosity to

5 × 1034 cm−2s−1 with luminosity levelling to reach an

integrated luminosity of 250 fb−1 per year allowing over

12 years to reach 3000 fb−1 after the upgrade [1]. This

would be a 10 fold increase in the planned first ten year

running of the LHC [2].

Local Crab Crossing Scheme

The optics scheme for the HL-LHC upgrade [3][4] re-

quires a large crossing angle at the interaction point (IP) in

order to reach a small β∗ of approximately 15 cm. This

large crossing angle is required to overcome the impact of

beam beam interaction [5]. A large crossing angle intro-

duces luminosity loss due to a reduction of the geometric

overlap. In order to recover this loss and control the lumi-

nosity a crab crossing scheme [6] is proposed at the two low

β IPs. In Fig.1 the crab crossing scheme is shown and the

layout around the interaction point proposed for the HL-

LHC upgrade[4] is shown in Fig.2 with the relative cavity

positions. A π/2 betatron phase advance is required be-

tween the crab cavities across the IP. A transverse deflect-

ing kick is applied at the cavities and the bunches rotate

up until the IP, from there they rotate back to their original

orientation and the transverse kick removed from the bunch

by applying a kick of the same phase with voltage depen-

dent upon the optics in the interaction region (IR). Such

a crab cavity crossing scheme has never been tried before

for a hadron machine. The first such crossing for a lep-

ton machine was in KEK-B machine [7]. The total voltage
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required from the cavities before the IP is,

V =
c2p0 tan(

θ
2
)

qω
√
β∗βcrab sin(Δφβ)

, (1)

where p0, θ, βcrab, ω, φβ are the reference momentum,

crossing angle, beta function at the crab cavity, cavity fre-

quency and betatron phase advance between the cavity and

IP respectively. In order to reduce the cavity voltage re-

quired the crab cavities are installed where βcrab is large

and respect the phase advance constraints, making the rest

of the machine sensitive to the dynamics of the cavities [8].

IPBetatron phase advance
Beam direction
Crab cavity

Bunch rotation

Figure 1: Local crab cavity crossing scheme.

CAVITY MODELS

Two different methods are used to simulate the cavity dy-

namics, RF multipoles (RFM) [9] and Taylor maps (TM).

The RFM method is an extension of the simple kick Hamil-

tonian in which Fourier decomposed integrated kick coeffi-

cients are calculated from the eigenmode solution of a cav-

ity design. The Hamiltonian describing the kick is given

by,

H =
c

ω

qVacc

p0
sin

(ωz
c

+Φ
)
−

N∑
n=1

�
[(

Bn sin
(ωz

c
+Φ

)

+ıAn sin
(ωz

c
+Φ

))
(x+ ıy)n

]
, (2)

where An, Bn, Vacc, Φ, x, y, z are the skew and nor-

mal multipole coefficients, on axis accelerating voltage,

phase, transverse positions and canonical longitudinal po-

sition relative to the reference particle respectively.

The RFM approximation neglects the orbit variations in-

side a cavity, the error is small in normalised coordinates

for small divergence and low magnitude of the kick com-

pared to the energy of the beam. The validity of this as-

sumption can be seen in Fig.3 [13] for one of the cavity de-

signs, which shows the trajectories of protons in the cavity
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Figure 2: Schematic layout of one low-beta interaction region (IR) proposed for the HL-LHC upgrade with crab cavities

showing quadrupoles (Q), dipoles (D) and the corresponding matching sections spread to the IRs either side of low β IR

[4].

for the 4 rod design. It is assumed that the radial depen-

dence of the multipolar kicks takes the form of rn, where

n is the order of the multipole, whereas a Bessel-function-

like dependence is more appropriate, however, the impact

of this is small at small radii.
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Figure 3: Trajectories through vertically orientated 4 rod

cavity design [10]. (a) py as a function of s for varying

z showing multiple kicks and (b) y as a function of s for

varying z showing multiple kicks leading to offset for zero

total kick z [13].

In order to develop a more accurate model a second

method of simulating the cavities is proposed, using trans-

fer maps expressed as Taylor maps (TM). Such an ap-

proach has shown great success for magnetostatic ma-

chine elements [11] and has been extended to RF cavities

in [12]. The TM are created by symplectically integrating

the Hamiltonian of a particle in a vector potential,

H =
δ

β0

− az + ps

−
√(

1

β0

+ δ

)2

− (px − ax)2 − (py − ay)2 − 1

β2
0γ

2
0

(3)

where β0, 	a, 	p⊥, γ0, ps, δ is the reference speed as a frac-

tion of c, normalised vector potential, canonical transverse

momentum, reference γ, momentum conjugate of position

s and conjugate energy deviation, respectively. The Hamil-

tonian is approximated paraxially and a second order ex-

plicit symplectic integration is carried out [14]. The nu-

merical integration is performed using a parallel differen-

tial algebra code to 10th order. In order to perform this

integration the vector potential is required to be expressed

as a Taylor series in x and y as a function of s.

The use of Taylor maps introduces a symplectic error

above that of the normal numerical noise from the trun-

cation of the Taylor series. The Jacobian J is said to be

symplectic if

J−1SJ = S, (4)
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Figure 4: Fitted E fields expressed as harmonic functions

(Fitted), Taylor series (Taylor) compared with linearly in-

terpolated meshed data (Interpolated) for vertically orien-

tated 4 rod cavity. (a) Fitted Ey and (b) fitted Ez compo-

nent of the field.

where S is defined by,

S =

⎛
⎝ 0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

⎞
⎠. (5)

The error matrix E is defined,

E = J−1SJ − S, (6)

and the terms of this are evaluated at (x, px, y, py, z, δ) =
0.001 and shown for varying orders of truncation of power

series in Fig.5.
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Figure 5: Symplectic error evaluated at

(x, px, y, py, z, δ) = 0.001 for varying order, where

the colours are for each of the 36 components of the error

matrix (4 rod cavity, normalised to 4.155 MV deflecting

kick).

Comparing the Taylor series expanded terms in x, y and

z of the RFM method kick, from the momentum change

derived from Eq.2, with those of the TM method for the

transverse momentum kick it would be expected that these

be very similar. This assumes that the trajectory through

the cavity is effectively rigid and that the radial dependence
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is dominated by the rn term. In Tab.1 the differences are

expressed as a percentage of the total kick (Δpy = 4.59×
10−8), it can be seen that the greatest magnitude of error at

the evaluated position is 5×10−2% for a B5 term, however

at lower radii lower order terms dominate the difference.

The difference in B5 is consistent with contributions from

the Bessel like radial dependence of lower order multipoles

which is included in the TM and not RFM.

Terms in Taylor series of py

Multipole Exponent RFM TM Difference as

term (rad/mn) (rad/mn) % of kick

B1 000010 4.574×10
−6 4.574×10

−6 2.18×10
−4

000030 -5.350×10
−5 -5.335×10

−5 3.37×10
−4

B3 200010 1.235×10
−4 1.225×10

−4 2.07×10
−3

002010 -1.235×10
−4 -1.232×10

−4 4.44×10
−4

200030 -1.444×10
−4 -1.433×10

−4 2.42×10
−7

002030 1.444×10
−4 1.442×10

−4 5.21×10
−8

B5 202010 3.348 2.009 2.92×10
−2

202030 -3.917×10
1 -2.350×10

1 3.41×10
−4

400010 -5.58×10
−1 -3.34×10

−1 4.86×10
−2

400030 6.527 3.918 5.68×10
−5

004010 -5.580×10
−1 -3.350×10

−1 4.86×10
−2

004030 6.527 3.918 5.68×10
−5

Table 1: Comparison of coefficients from Taylor map and

RF multipole kicks for the 4 rod cavity, where the ex-

ponents are the 6 powers to which (x, px, y, py, z, δ) are

raised respectively and n is the order of the term. The

difference is evaluated as a percentage of the total kick at

(x, y, z) = 0.01 m, with units of m and rad for position

and momentum variables respectively. Cavity normalised

to 3.81933 MV deflecting kick.

SixTrack uses a thin lens tracking particle tracking

model [15], where thick lens elements are split into a se-

ries of momentum kicks and drifts. In order to implement

the TMs in the code a new Sixtrack element type anti drift

is required. This element removes the drift component on

either side of the TM in the tracking code and maintains the

correct length for the Sixtrack crab element and is shown in

Fig.6. In order to allow for tracking to occur within a rea-

sonable amount of computational time the number of co-

efficients are reduced through a ranked weighting method

based upon their contribution to the dynamics.
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Figure 6: Implementation of Taylor maps in the thin lens

tracking code SixTrack.

CONCLUSION

Two methods for simulating crab cavities in the HL-LHC

have been developed and implemented into the SixTrack

tracking code for dynamic aperture studies. A new imple-

mentation of Taylor maps is used in a thin lens tracking

regime and the errors and assumptions associated with both

methods are presented.
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