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Abstract 
It is well-known that the electron trajectory in an 

undulator is influenced by the focusing properties (both 
horizontal and vertical) of the magnetic field. The 
approximate solutions of motion equations for electrons 
in the 3-dimensional magnetic field, which describe these 
focusing properties, can be found by means of averaging 
over the short-length oscillations. On the other hand, the 
equations of motion can be solved numerically, by 
applying the Runge-Kutta algorithm. It is shown in this 
paper that numerically computed trajectories, which can 
be considered as figure of merit, on frequent occasions 
differ considerably from the correspondent approximate 
solutions obtained through the averaging method. It 
means that actually the undulator field influence on the 
electron trajectory is complicated and often cannot be 
reduced to the well-known focusing phenomena along.  

INTRODUCTION 
In the European XFEL case, long segmented planar 

undulators (21 segments for the SASE3 beamline to 35 
for SASE1 and SASE2) are planned to be installed, with 
quadrupole lenses between different segments [1]. The 
focusing properties of undulators should be taken into 
account in simulations of spontaneous radiation, which 
constitutes the background signal of the FEL. 

As far as we know horizontal and vertical focal lengths 
of an undulator were first calculated in [2]. In a planar 
undulator with infinitely wide magnetic poles and hence 
without horizontal focusing, the vertical focusing was 
analyzed in [3, 4]. In [5, 6] trajectories in the presence of 
focusing undulator magnetic field were calculated up to 
the lowest order in the initial positions and angles of the 
electrons. Some general relations dealing with undulator 
focal lengths were derived in [7 – 9]. Long-length-scale 
anharmonic betatron motion of electrons in very long 
undulators was studied in [10]. All these studies were 
carried out within the following limits: the focusing 
effects were calculated averaging over the undulator 
period and only terms, which are linear in the electron 
initial positions and angles, were taken into account.  

The line width of FEL radiation is related to the 
dimensionless Pierce parameter  , which for XFEL can 

be as small as 3 10-4. This means that the fundamental 
wavelength has to be tuned with an accuracy given by 

  , whence the accuracy for undulator deflection 

parameter K  is about of 410K . The expression for 

the phase of spontaneous radiation in the general case 
[11] gives the following relation for K , see Fig. 1:  
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Here u  is an undulator period,   is an electron reduced 

energy, x  is its reduced horizontal velocity, being of the 

order of K . It can be derived from (1) that the 

necessary accuracy for x  is of the order of 
9103   Kx . It is doubtful whether 

approximate solutions for trajectories, obtained with the 
averaging method, provide so high accuracy.  

TRAJECTORY EQUATIONS IN 3-D FIELD 
We model the three-dimensional magnetic field by the 

following expressions which satisfy Maxwell equations:  
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Here akx 1 , uzk 2 , 22
zxy kkk  , u  is the 

undulator period length. The linear parameter a  gives the 
field non-uniformity along X -axis and is of the order of 
the width of the undulator poles. 
 
 
 
 
 
 

 

Figure 1: Sketch of a permanent magnet undulator. 

We will use the exact trajectory equations in the fixed 
coordinate system },,{ zyx  [12]:  

 xzy ByxByBxyxqx  )1(1 222 , (5) 

 yzx ByxBxByyxqy  )1(1 222 . (6) 

Here   and   are the electron’s reduced velocity and 

energy respectively, )( 2mceq   and an apostrophe 

indicates a derivative with respect to z .  
Substituting Eqs. (2) – (4) into Eqs. (5) and (6) and 

expanding them into a series about small values xkx , 
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yky , x  and y , we derive the following system of two 

nonlinear differential equations: 
   cossin)3(5.01 222222 yykykyxkxpkx zyxz     (7) 

          cossin)( 2 yxkyxxykpky zxz  .   (8) 

Here )2()( 2
0 mceBK u   is an undulator deflection 

parameter, )(Kp   and zkz . 

The change-over from precise equations (5) and (6) to 
their approximations (7) and (8) must be accompanied by 
the accuracy loss. To estimate it, a computer code was 
written, which solves the systems of equations (5, 6) and 
(7, 8) by using the Runge-Kutta algorithm. The 
simulations were performed with the European XFEL 
parameters listed in the Table 1 (see [1]).  

 

Table 1: European XFEL Parameters for Simulation 

Electron beam energy  17.5 GeV 

Normalized emittance n  10-6 m rad  

RMS beam emittance  n  2.9*10-11 m rad 

Averaged beta-function 15 m 

Undulator period u   40 mm  

Undulator deflection parameter K  4 

Horizontal non-uniformity a  50 mm 

Number of undulator periods N  124 

Initial transversal position 00 , yx  0,03 mm 

Initial deflection 000 , yKx    2*10-3 mrad 

 
The computed results are presented in Table 2. Here 

)()(max 7856 zxzxx  , where )(56 zx  is the solution 

of differential Eqs. (5) and (6) computed numerically, and 
)(78 zx  is the corresponding solution of Eqs. (7) and (8). 

Similar notation is understood for y , x  and y .  
 

Table 2: Differences in Solutions of Eqs. (5, 6) and (7, 8) 

    n   n100  

x , mm 2.6*10-11 1.2*10-7 

y , mm 3.0*10-10 3.0*10-7 

x  1.6*10-14 1.0*10-10 

y  1.4*10-13 1.5*10-10 

 
The column n  corresponds to initial coordinates and 

deflections listed in Table 1, and the column n100  

corresponds to initial values which are increased in 10 
times each. It is clear that differences are small, and that 

the approximate differential equations (7) and (8) can be 
safety used for trajectory simulations.  

FOCUSING EFECTS 
By neglecting all small terms in equations (7) and (8), 

which are quadratic in x , x , y  and y , we get the 

electron trajectory in linear approximation:  
)sin()()( 001  zkpzxzx  ,  (9) 

zyyzy 001 )(  .    (10) 

We may generalize these expressions, searching for 
“focusing” solutions for equations (7) and (8) in the form:  

)sin()()()( zsf kpzxzx  ,  (11) 

)()( zyzy sf  ,    (12) 

where )(zxs  and )(zys  are slowly varying functions. 

Substituting equations (11) and (12) into (7) and (8), and 
averaging over the undulator period (thus cancelling the 
fast oscillating terms), we get the following equations for 
the slowly varying components of the trajectory [5, 6]: 

0)()( 22  zxkzx sxzs  ,   (13) 

0)()( 22  zykzy syzs  ,   (14) 

where )2()( zxx kpk  and )2()( zyy kpk  are 

the dimensionless betatron oscillations periods in units of 

u  along the horizontal and the vertical directions. 

Solving these equations, we get the following expressions 
for )(zx f  and )(zy f :  
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where px  00 . 

Below we will consider relatively short undulators, 
with the number of periods N  such that:  

12 , yxN    (17) 

In the case of the European XFEL conditions (17) are 

clearly fulfilled as N =124, zyx kk ~, , 4
, 10~ pyx .  

Differentiating expressions (15) and (16) with respect 
to z , we get for relatively short undulators:  
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The horizontal focal length xf  can be deduced from 

the geometrically evident relation: 
0

)(1

dx
Nzxd

f
u
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 . 

As a result for xf  we obtain [2]:  221 xzx Nkf  . 

The relation 221 yzy Nkf   can be derived similarly.  

Although relations (15) and (16) have been universally 
accepted, in some practically important cases they may be 
in sharp contrast with more accurately simulated results.  
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NUMERICAL SIMULATIONS 
Let us compare the numerically computed trajectory 

(marked as “RK” – Runge-Kutta) with those given by 
eqs. (15), (16) (marked as “focus”). A computer code was 
written for accurate simulation of trajectories in undulator 
field, which employs the Runge-Kutta algorithm. The 
data from Table 1 were used for simulations. For 
simplicity, here we extracted the functions 1x  and 1y (see 

(9), (10)) from trajectories:  
)()( 1 zxzxX RKRK  , )()( 1 zxzxX RKRK  , 

)()( 1 zxzxX ffocus  , )()( 1 zxzxX ffocus  . 

 

This example of calculations demonstrates that the 
influence of transverse non-uniformities of the undulator 
field on the horizontal component of the electron 
trajectory is considerably larger than what follows from 
simple relations (15) and (16). At the same time, the 
influence on the vertical component of trajectory is 
relatively small.  

Notice that approximate analytical solutions for Eqs. 
(7) and (8) can be derived [13], which are much more 
accurate compared with Eqs. (15), (16). These analytical 
solutions also confirm the results presented here.  
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Figure 2. Focusing vs. numerically simulated components 
of horizontal coordinate. 
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Figure 3. The same as Fig. 2, starting part of trajectory. 
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Figure 4. Focusing vs. numerically simulated 
components of horizontal velocity. 
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Figure 5. Focusing vs. numerically simulated components 
of vertical velocity. 
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