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 Overview of features and capabilities
 SDDS and the tool-based approach to accelerator modeling
 Start-to-end simulation and the CSR microbunching instability
 Other interesting or notable examples

– Top-up safety tracking
– Direct optimization of storage ring beam dynamics

 Summary
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High-level View of elegant1

 Code for design and modeling of single- and multi-pass accelerators
 Open source C/C++

– Runs on Linux, Windows, MAC, Solaris, ...
 Highly-extensible with dictionary-driven lattice parser
 Serial and parallel2 versions with common code base
 New version released about twice a year

– Use revision control system and regression testing suite to reduce 
chance of errors

 Extensive on-line resources

1: M. Borland, APS LS-287, 2000; M. Borland et al., ICAP09, 111.
2: Y. Wang et al., ICAP09, 355 and refs. therein.
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Basic Features of elegant
 Lumped-element, 6D tracking code

– Over 100 element types, >90% of which are parallelized
– Various methods, allowing user to customize model to needs, e.g., 

symplectic integration or matrices
 Calculation of lattice parameters, transfer matrices, orbits, beam 

moments, etc.
 Serial and parallel dynamic aperture, momentum aperture, frequency 

map analysis
 Optimization, including both serial and parallel algorithms
 Multi-dimensional scanning of parameters
 Errors and corrections
 Time-dependent ramping and modulation
 Thorough use of self-describing data files (SDDS)
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SDDS Files
 SDDS = Self-Describing Data Sets file protocol1

– Originally developed for use in APS control system
– Allows robust interchange of data among programs

• Data is accessed by name only
• Programs can check units and data type instead of doing 

something inappropriate with invalid data
– elegant uses SDDS files for, e.g.,

• Input and output of phase space data
• Input and output of element parameters (e.g., magnet strength)
• Twiss parameters, beam moments, matrices, orbits, etc., vs s
• Input of wake functions, impedances, HOM properties
• Input of ramp/modulation data, kicker waveforms
• Input and output of errors and corrections

 SDDS I/O libraries are open source
– Support for C/C++, FORTRAN, Java, MATLAB, Tcl2

– MPI-based parallel I/O for high performance3
1: M. Borland, PAC95, 2184.
2: R. Soliday, ICALEPCS01, 545.
3: H. Shang et al., ICAP09, 347.

slot:Describing%20
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SDDS Toolkit1,2,3

 SDDS Toolkit
– Open source collection of generic programs that read and/or write 

SDDS files
– Functions include graphics, analysis, and manipulation of data, plus 

control system applications
– All the SDDS data that elegant reads or writes can be pre- or post-

processed with SDDS tools
 Due to the relative simplicity of SDDS files, SDDS tools can be used 

sequentially as operators to transform data
– E.g., to compute and plot amplitude-dependent tune

1: M. Borland, PAC95, 2184.
2: H. Shang et al., PAC03, 3470.
3: R. Soliday et al., PAC03, 3473.

elegant
Turn-by-turn phase
space data

sddspeakfind sddspfitsddsfft sddsplot
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Tool-based Approach to Accelerator Simulation1

 SDDS Toolkit provides generic data processing, manipulation, and 
display

 Elegant Tools, a set of physics programs specifically designed to 
supplement elegant, including
– Calculations of x-ray brightness, flux, etc.
– Touschek lifetime and intrabeam scattering
– Beam analysis, transformation, and modulation

 Other simulation codes, perhaps interfaced via conversion tools, e.g.
– Injector simulation
– Radiation shower simulation
– Wake function or impedance calculation
– Multibunch instability analysis

 Advantages of this approach
– Multiple physics codes share pre- and post-processing tools
– Physics codes are simplified
– Robust interface between codes
– Complex simulations are easier and faster

1: M. Borland et al., PAC2003, 3461.



M. Borland, Features and Applications of the Program elegant, Shanghai, May 2013

Example of Tool-based Approach
 One possible configuration for start-to-end simulation of FELs

ASTRA
ASCII
Particle
Data

astra2elegant
Particle
Data

elegant
Wake
functions

Particle
Data

elegant2genesis

SDDS
Toolkit

GENESIS
(SDDS)

FEL
Data

Beam
file

ASTRA: K. Floettman et al.
GENESIS: S. Reiche, NIMA 429, 242 (1999)
SDDS GENESIS and elegant2genesis: Y. Chae et al., PAC2001, 2710.
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What is CSR and How Does it Affect the Beam?1

 Electrons traversing a dipole magnet emit synchrotron radiation
 Electron bunch will radiate coherently and intensely at wavelengths 

comparable to scale of its longitudinal structure
 Electrons travel in a curved path, while emitted photons travel in a 

straight path

 Radiation emitted by the tail will catch up with the head, changing its 
energy

 Since this happens inside dipoles, it leads to emittance growth
 CSR propagating into drift spaces between or downstream of dipoles 

can have very significant impact2,3

1: B. E. Carlsten et al, Phys. Rev E 51, 1453 (1995).
2: M. Borland, PRSTAB 070701 (2001).
3: G. Stupakov et al., SLAC LCLS-TN-01-12, 2001.
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Modeling the Linac Coherent Light Source
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 Early simulations of LCLS were not “start-to-end” simulations but used 
gaussian beams

 Indicated that using double-chicane bunch compressors with 180 deg 
betatron phase advance would result in calculation of CSR effects

1: J. Arthur et al., SLAC-R-521 (1998)Figure courtesy P. Emma (SLAC).
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CSR Microbunching Instability

~3m period

 Team from APS and SLAC created tools to allow start-to-end modeling 
of LCLS and LEUTL

 As part of this effort, added to elegant modeling of CSR in dipoles and 
drift spaces1

 Used a line-charge model with several advantages over previous efforts
– Fast, permitting use of large numbers of particles
– High longitudinal resolution
– Arbitrary longitudinal distribution

instead of gaussians
 These simulations2,3 predicted a

micro-bunching instability
driven by CSR

 CSR-driven instability in rings was
described theoretically at the 
same time4 and suggested by
experimental evidence5

1: M. Borland, PRSTAB 070701 (2001).
2: M. Borland et al., PAC2001, 2707.
3: M. Borland et al., NIM A 483 (2002) 268.

4: Heiffets et al, PAC2001, 1856 (2001).
5: J. Byrd et al., PRL 224801 (2002) and
refs. therein. 

slot:
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Qualitative Explanation of the Instability

 If a density clump exists in a beam,
CSR will be emitted

 Head of clump is accelerated, while 
tail is decelerated

 A particle that gains (looses) energy
in a dipole falls back (moves ahead)

 Thus, the clump is amplified, which 
amplifies the CSR wake, ...

 Related to longer-scale “phase-space
fragmentation” seen experimentally at
JLAB and TESLA2,3,4 and in 
simulations of APS LEUTL5

W  s=K∫−∞

s dz
s− z1/ 3

d
dz

Steady-state CSR wake

1: E. L. Saldin et al., NIMA 398 (1997), 373.
2: T. Limberg et al., NIMA 475 (2001) 353.
3: R.Li, EPAC2000, 1312.
4: P. Piot et al., EPAC 2000, 1546.
5: M. Borland, PRSTAB 070701 (2001).

Energy distribution fragmentation from 
LEUTL simulations of full compression5
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 P. Emma revised LCLS design to
reduce CSR problem
– Single instead of double chicanes
– Long chicanes with weak dipoles
– Superconducting wiggler before

BC2 to increase incoherent energy
spread and suppress instability

 Later discoveries1 added to the challenges
surrounding magnetic bunch compression
– Magnification of instability due to longitudinal space charge in 

linac
– Use of laser/undulator beam heater to suppress instability
– These discoveries were subsequently verified2 with elegant

 The microbunching instability remains an active topic of research with 
periodic workshops

Improved LCLS Design

1: E. L. Saldin et al., DESY TESLA-FEL-2003-02.
2: Z. Huang et al., PRSTAB 074401 (2004).
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Top-up Operation

 Traditionally, light source rings operated in “decay mode,” where the 
beam current decays for many hours before being refilled

 This has several drawbacks
– Users see variation in x-ray intensity
– X-ray optics see variation in heat load, impacting stability
– Emittance, coupling, and bunch intensity limited by need for long lifetime
– Intensity-dependence of diagnostics and chamber temperatures results in 

beam position drift

 Top-up operation entails fairly rapid addition of small amounts of beam 
current, keeping the intensity nearly constant

First user top-up
operation at APS
in June 2000.
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Top-up Safety1

 One concern with top-up is injection while user shutters are open
– Electron beam from injector might be

delivered down user beamline, with
potentially catastrophic consequences

 One scenario
– Dipole magnet (partially) shorted
– Downstream magnets adjusted to

compensate perturbation to stored beam
– Injected beam energy higher-than-normal

 APS performed the first tracking studies2 of this
question using elegant

 Demonstrated that it was essentially impossible
to simultaneously store beam and extract
injected beam down a beamline
– Hence, top-up safety could be ensured

by interlocking injector to stored beam
1: L. Emery, PAC99, 2939.
2: M. Borland et al., PAC99, 2319.
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Scope of Tracking Problem
 About 250 runs of elegant are required for each of six beamline 

configurations
 Runs involved 20 to 50 different conditions, such as degree of shorting, 

size of quadrupole error, etc.
 In total, about 50,000 different physical situations had to be simulated

– Simulation of whether stored beam was possible, including orbit correction 
using downstream correctors

– Simulation of whether backtracked beam could exit the sector

 In 1999, took several days on ~20 Sun workstations
– Presently, just a few hours on an eight-core PC

 Data was postprocessed automatically using SDDS, taking just a few 
minutes to provide an answer:
– The minimum safety gap was 14% of the full dipole strength

 Subsequently, other groups have made similarly thorough studies of 
top-up safety1-4

1: H. Nishimura et al., NIM A 608, 2 (2009).
2: A. Terebilo et al., SSRL-ACC-007, 2009.
3: I.P.S. Martin et al., EPAC08, 2085.
4: Y. Li et al., PRSTAB 14, 033501 (2011).
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Direct Optimization of Nonlinear Dynamics
 Designers of low-emittance electron rings must

– Ensure adequate dynamic aperture for injection

– Ensure adequate momentum aperture for Touschek lifetime

 Traditionally, several methods have been employed, e.g.,
– Minimization of amplitude- and energy-dependent tune shifts

– Minimization of resonance driving terms

– In the end, tracking is always necessary to verify any solution

 With a modest computing cluster, can directly optimize the results of tracking
 To our knowledge, first published results by APS group using elegant1

– Direct maximization of dynamic aperture

– Direct minimization of tune spread for ensemble of particles

1: H. Shang et al., PAC2005, 4232.
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Direct Optimization using elegant
 In 2009, we published1 results of further direct optimization of 

APS lattice using two algorithms
– Required high chromaticity (ξ=6~10) makes this challenging

 Grid scan algorithm
– Scan two out of four families of sextupoles
– Track set of particles filling desired transverse and momentum 

space
– Choose settings that result in highest capture rate after 1000 turns
– Easily implemented with elegant thanks to SDDS toolkit
– Result for ξ=6: 20% higher lifetime, largest DA seen to date

1: M. Borland et al., PAC09, 3850.

New sextupole settings providing
the improved beam lifetime and
DA for ξ=6
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Direct Genetic Optimization using elegant

 Inspired by Bazarov1 and Emery2, we 
also employed3 a genetic algorithm

 Method
– Use dynamic aperture search and 

robust measure of DA area
– Use s-dependent momentum aperture 

search as indicator of Touschek lifetime
– Also added tune knobs

 Each “function evaluation” uses 
several runs of elegant, plus SDDS 
for postprocessing

 Developed potential APS upgrade 
lattices with 2, 4, and 8
symmetric long straights (LSSs)
– Discovered that breaking the reflection 

symmetry of the sextupole distribution 
was very helpful

– Mock-ups of these lattices showed 
normal lifetime and injection efficiency 1: I. Bazarov et al., PRSTAB 034202 (2005).

2: L. Emery, PAC05, 2962.
3: M. Borland et al., PAC09, 3850.
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Direct Genetic Optimization using elegant

 Methods subsequently refined1,2

– Direct optimization of Touschek lifetime 
computed from momentum aperture

– Parallelization of DA and MA scans to 
permit using massively parallel resources

• E.g., used >40,000 cores on BlueGene/P

 Addressed increasingly difficulty APS 
upgrade lattices
– Non-symmetrical placement of LSSs
– >2x reduced horizontal beamsize (RHB) 

needed in one sector
– Special optics and sextupole tuning 

needed for short-pulse x-ray system (SPX) 

 To address this, gave optimizer
– Detailed linear optics knobs
– Over 50 independent sextupole knobs
– Tracking-based measure of SPX 

emittance dilution

 Independent work on tracking-based 
optimization at LBNL3 and BNL4

1: M. Borland et al., FLS2010.
2: M. Borland et al., APS LS-319 (2010).
3: C. Steier et al., IPAC10, 4748.
4: L. Yang et al., FLS 2010.

SPX

RHB

LSS
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Summary
 Thanks to input from many users and contributors, elegant is a capable 

and flexible code with some noteworthy contributions
– Discovery of microbunching instability in bunch compressors
– Top-up safety tracking
– Direct optimization of storage ring nonlinear dynamics
– Many interesting applications from outside APS

 Coupling elegant with SDDS is a key feature
– Flexible and robust interface with other codes
– Powerful pre- and postprocessing

 Google “elegant download Argonne” to get started
– Code, executables, and examples for elegant and SDDS
– Manual and forum



M. Borland, Features and Applications of the Program elegant, Shanghai, May 2013

Acknowledgements
 Contributors to elegant

– M. Borland, W. Guo, V. Sajaev, H. Shang, C.-X. Wang, Y. Wang, 
Y. Wu, A. Xiao

 Contributors to elegant toolkit
– M. Borland, Y.-C. Chae, R. Dejus, X. Dong, L. Emery, H. Shang, R. 

Soliday, A. Xiao
 Contributors to SDDS

– M. Borland, L. Emery, H. Shang, R. Soliday
 Multi-language, multi-platform distribution and support

– R. Soliday
 Many users, who gave suggestions and reported bugs

– Special mention: P. Emma, first user outside APS
 Advice, patience, and support:

– H. Wiedemann, J. Galayda


	OpenOffice Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

