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Ring performance 
parameters 
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•  Luminosity (brightness)�Colliders 
(and their 
injectors)�

• Beam power�High-
power 
rings �

• Photon brilliance�X-ray 
storage 
rings�

Extreme 
intensity within 
ultra-low beam 

dimensions�
�
�
�
�

Collective 
effects become 

predominant �
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Linear optics for reducing 
collective effects 
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q An unconventional approach�
q Already large amount of single-
particle constraints to be satisfied, 
including non-linear dynamics�
q Parameter space becomes larger and 
difficult to control �

Analytical	
  and	
  
numerical	
  methods	
  
for	
  obtaining	
  	
  global	
  
parameterization	
  

A	
  cost	
  effective	
  
solution	
  if	
  successful	
  

q  For operating rings, changing the 
optics is subject to restrictions �

q  Existing magnets and powering 
scheme�
q  Critical systems as RF and beam 
transfer elements�
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“Optics” knobs I 
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q Beam energy (not a real optics constraint…)�
q Depends on users needs, pre-injectors’ reach, cost…�
q Almost all collective effect (e-cloud is one exception) 
are reduced with increased energy�
q  In e+/e- rings, " "   and optimum needs to be 
found for reaching high-brightness�

✏
x

/ �2

q Transverse beam sizes�
q Larger beam sizes can reduce collective effects due to 
self-induced fields (space-charge, IBS)�
q High-brightness targets low emittances, thus optics 
functions are only handle for increasing beam sizes�



“Optics” knobs II 
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q Phase slip factor" " " "with the �⌘ = ↵p �
1

�2

momentum compaction factor� ↵
p

=
1

C

I
D

x

(s)

⇢(s)
ds

q Depends on energy and transverse beam sizes�
q Connects transverse and longitudinal motion �

q Synchrotron frequency (or bunch length)  
proportional to �

q Instability intensity thresholds (TMCI, microwave, 
coupled bunch,…)�

p
⌘

Nth / ⌘
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PS2 ring 
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q  Studied until 2010, as a 
possible upgrade scenario of the 
LHC injector complex�
q  Beam injected at 4 GeV/c 
from the LP-SPL and extracted 
at 50 GeV/c �
q  High-intensity ring with 
negative momentum 
compaction arc cells (avoid 
transition) and doublet straights�
q  Most of the design concepts 
currently adapted to a study of 
a High-Power PS (2MW) for 
neutrinos (LAGUNA-LBNO)�

HP-PS 

THPWO081  



Optics optimization 
for PS2 

q  Applying GLASS method �
q  Global view of the “imaginary” transition gamma and geometrical acceptance 
dependence on tunes�

q  Low transition energy for reducing collective effects (large horizontal tune)�
q  Large acceptance (high vertical tune) for losses and magnet constraints (but small 
beam sizes)�

q  Working point chosen based on this analysis and non-linear dynamics 
optimization �
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(see D. Robin et al., PRST-AB 11, 024002, 2008)   

H. Bartosik et al., THPE022, IPAC 2010 
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CLIC damping rings 
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q  Ultra low-emittance bunches with high bunch 
charge trigger several collective effects�

q  Emittance dominated by IBS (significant blow up)�
q  Large vertical space charge tune-shift �
q  Single and multi-bunch instabilities (TMCI, 
microwave, e-cloud, fast-ion, coupled bunch,…) �

Optics 
parameter 
optimization 
for reducing 
collective 
effects�

F. Antoniou, PhD thesis, NTUA, 2013 



Optimal energy 
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q  Steady state emittance as a function of the energy (including IBS)�
q  Broad minimum at around 2.5 GeV �
q  Strong horizontal beam blow-up for lower energies�

CLIC DR 
2007 

CLIC DR 
2009 

CLIC DR 
2007 

CLIC DR 
2009 

q  Increased energy from 2.42 to 2.86 GeV resulted in reduction 
of horizontal emittance blow-up by a factor of 2 �



Parameterization  
of TME cells 
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f1 =
s2 (4s1ld + ld

2 +8Dxcρ)
4s1ld + 4s2ld + ld

2 −8Dsρ +8Dxcρ

=
lds2 12s1 + ld Dr +3( )( )

12ld s1 + s2( )+ ld2 Dr +3( )− 24Dsρ

f2 =
8s2Dsρ

−4s1ld − ld
2 +8Dsρ −8Dxcρ

=
24s2Dsρ

12lds1 + ld
2 Dr +3( )− 24Dsρ

q Analytical representation 
of TME quadrupole focal 
lengths (thin lens)�

q  Depending on horizontal 
optics conditions at dipole center 
(horizontal emittance) and drift 
lengths�
q  Multi-parametric space for 
applying optics stability criteria, 
magnet constraints, non-linear 
optimization, IBS reduction,…�

Dr =
Dxc

Dxc
min ,βr =

βxc

βxc
min ,εr =

εxc
εxc
min

Ds = g(s1, s2, s2, ld,βr,Dr )



TME optimization for 
reducing IBS 
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q  Low cell phase advances can 
minimize IBS growth rates�
q  Correspond to large deviation 
from absolute theoretical 
emittance minimum  �

q  Optimal also for minimizing 
space-charge tuneshift and 
increase momentum compaction 
factor �



Wiggler parameter 
choice 
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q  The highest field and smallest 
period provide the smallest 
emittance�
q  Lower emittance blow-up due to 
IBS for high-field but moderate 
period (within CLIC emittance 
targets)�
q  Wiggler prototype in NbTi with 
these specs, built at BINP, for 
installation to ANKA (KIT)�

q  Serving X-ray user community but 
also beam tests�

q  Development of higher-field short 
models in Nb3Sn at CERN �

D. Schoerling et al., PRST-AB 15, 042401, 2012  
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Injectors for high 
brightness – CERN SPS 
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q LHC injectors upgrade (LIU 
project) for High Luminosity LHC 
(HL-LHC)�

q  Significantly higher intensity and 
brightness is required from injectors, 
including the SPS�

R. Garoby et al. THPWO077 

q Intensity limitations of SPS�
q  Beam loading in 200MHz and 800MHz RF system – RF upgrade�
q  Transverse mode coupling instability at injection (TMCI)�
q  Longitudinal instabilities (single and multi-bunch)�
q  Electron cloud for 25ns – coating?�

B. Godard et al. WEPEA053 

WG chaired by E. Shaposhnikova 



Instability thresholds and 
slippage factor 

q Transverse instabilities�
q  TMCI at injection - single bunch instability in vertical plane�

q  Threshold at 1.6x1011p/b (εl=0.35eVs, τ=3.8ns) with low vertical 
chromaticity�

Nth / "l
�y

⌘

q  E-cloud vertical instability for 25ns beam �
q  Threshold higher than 1.2x1011p/b due to scrubbing �

Nth / Qs /
p
⌘

q Longitudinal instabilities �
q  Single bunch and coupled bunch due to loss of Landau damping �

q  Threshold at 2x1010p/b for single harmonic RF (800 MHz cavity use is 
mandatory) �

T. Argyropoulos et al,  
TUPWA039, TUPWA040 

Nth / ✏5/2l ⌘ 15/05/2013 IPAC'13 - YP 



q  Increase slippage factor in 
SPS (all FODO lattice) by 
reducing horizontal tune 
(from 26 to 20, Q26 vs. Q20) �
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Slippage factor increased by a factor of 
2.8 at injection and 1.6 at flat top �



TMCI threshold 
q  In nominal optics, measured threshold at 
1.6x1011p/b for low chromaticity�

q  High-chromaticity helps increasing threshold, but 
also losses along the cycle become excessive�

Nth / "l
�y

⌘
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q  Measured threshold in Q20 > 4x1011p/b!!! �
q  Injected single bunches of 3x1011p/b in the LHC for machine studies�

H. Bartosik et al, HB2012 and TUPME034  
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E-cloud instability 
threshold 

q  Simulations with HEADTAIL code�
q  Injection energy, uniform cloud distribution, 
located in dipole regions�

q  Linear scaling with Synchrotron tune 
demonstrated�
q  Clearly higher thresholds predicted for Q20 � H. Bartosik et al, IPAC2011 
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Longitudinal impedance 
threshold 

q  Impedance threshold has minimum at flat top �
q  Controlled longitudinal emittance blow-up during ramp for Q26 �
q  Less (or no) longitudinal emittance blow-up needed in Q20 �

15/05/2013 
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E. Shaposhnikova 

q  Instability limit at flat bottom �
q  Crtitical with Q26 when pushing intensity�
q  Big margin with Q20 (factor of 3)�



Stability without 
longitudinal blow-up 

15/05/2013 

T. Argyropoulos 
et al. 
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Extraction to the LHC 
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T. Argyropoulos 
et al. 
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q  Bunches need to be shortened at flat top to fit LHC bucket �
q  Maximum voltage already used in Q26 (RF system upgrade)�
q  Beam with same longitudinal emittance would have larger bunch length in Q20 �

q  Similar bunch length at flat top in both optics for same longitudinal stability�
q  Smaller longitudinal emittance in Q20 �
q  Smaller rms spread in bunch length at extraction with Q20�

q  Ready for delivery to LHC�



LHC brightness with 
SPS Q20 

	
  

	
  

	
  

	
  

q  Excellent brightness 
preservation between SPS flat 
bottom and LHC flat-bottom �

q  Opened way for ultra-high 
brightness beams of     
HL-LHC era �

q  Delivered also with Q20 �
q  25ns beams for LHC 

scrubbing run (12/12)�
q  LHC ion beam during p-Pb 

run (01-02/13)�
q  Lower SC tune-shift, IBS 

in SPS�
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q  Operational deployment of Q20 optics for LHC beams�
q  Very smooth switch (09/12), allowing around 20% brighter beams on LHC flat 

bottom �

q  Work to be done in the LHC for digesting ultra high-brightness beams�

THPWO080 

Q20  Q26  

F. Antoniou et al., TUPME046 



Summary 
q  Optimization of linear optics parameters with direct 

impact to collective effects�
q  Using analytical and numerical methods �
q  NMC cell design and working point choice in high-

intensity (or high-power) rings�
q  Conceptual design of ultra-low emittance damping 

rings �
q  Break intensity limitations in operating LHC injector, 

without any cost impact or hardware change�
q  Optics design needs to go beyond single-particle 

dynamics and include collective effects for reaching 
optimal performance�
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