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J Motivation for using optics to reduce collective effects
! Ring performance parameters



Colliders
(and their

‘ injectors)

e Luminosity (brightness)

N1 N3 fny

o

Ao 0y

Extreme
intensity within
ultra-low beam

&/ dimensions

@ Beam power

.
:
;\.

‘ X—r
storage
rings

IPAC'13 - YP

P=17 Ey
e Photon brilliance
et ‘[\]é)
AT €€,

Collective
effects become
/  predominant

15/05/2013



d An unconventional approach

IPAC'13 - YP 5

¢ Analytical and
! Already large amount of single- Aumerical methods

particle constraints to be satisfied, for obtaining global
including non-linear dynamics parameterization

! Parameter space becomes larger and
difficult to control

! For operating rings, changing the

optics is subject to restrictions A cost effective
d Existing magnets and powering
scheme

4 Critical systems as RF and beam
transfer elements

solution if successful

15/05/2013
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J Optics quantities affecting collective beam behavior
! Energy, beam sizes, slippage factor
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“Optics” knobs 1

1 Beam energy (not a real optics constraint...)
Depends on users needs, pre-injectors’ reach, cost...

Almost all collective effect (e-cloud is one exception)

are reduced with increased energy

In et/e” rings, €, X ”}/2 and optimum needs to be

found for reaching high-brightness
1 Transverse beam sizes

Larger beam sizes can reduce collective effects due to
self-induced fields (space-charge, IBS)

High-brightness fargets low emittances, thus optics
functions are only handle for increasing beam sizes



“Optics” knobs II

. 1 .
JdPhase slip factor n =, — —  with the
)
, E-of- D (s)
momentum compaction factor «, = —7{ ds
: )

dDepends on energy and fransverse beam sizes
d Connects transverse and longitudinal motion

Synchrotron frequency (or bunch length)
proportional to /7

 Instability intensity thresholds (TMCI, microwave,
coupled bunch,...) Nip X n



[ Concrete examples for rings in design
! High intensity and/or high-power rings

L Negative momentum compaction factor - PS2 ring
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PS2 ring
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Optics optimization
fo r PS 2 H. Bartosik et al., THPE022, IPAC 2010
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O Applying GLASS method (see D. Robin et al., PRST-AB 11, 024002, 2008)

O Global view of the “imaginary” transition gamma and geometrical acceptance
dependence on tunes

Low transition energy for reducing collective effects (large horizontal tune)

Large acceptance (high vertical tune) for losses and magnet constraints (but small
beam sizes)

L Working point chosen based on this analysis and non-linear dynamics
optimization



[ Concrete examples for rings in design

! Ultra-low emittance damping rings
[ Optics design of IBS dominated rings - CLIC damping rings
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F. Antoniou, PhD thesis, NTUA, 2013
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d Ultra low-emittance bunches with high bunch
charge trigger several collective effects

! Emittance dominated by IBS (significant blow up)
! Large vertical space charge tune-shift

-1 Single and multi-bunch instabilities (TMCI,
microwave, e-cloud, fast-ion, coupled bunch,...)
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Optics
parameter
optimization
for reducing
collective
effects
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0 Steady state emittance as a function of the energy (including IBS)

O Broad minimum at around 2.5 GeV
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O Strong horizontal beam blow-up for lower energies
O Increased energy from 2.42 fto 2.86 GeV resulted in reduction
of horizontal emittance blow-up by a factor of 2
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Parameterization
of TME cells

£ S(sk+l+8D p) g . m
' 4sl +4s,l,+12-8D p+8D_p . I I I I .
=5 (12s1 +1,(D, + 3))
121,(s, +5,)+1, (D, +3)-24D,p| O Analytical representation
f 8s,D,p of TME quadrupole focal
il _4slld _li +8Dsp_8Dxcp leng'l-hs ('I-hln |€n$)
Depending on horizontal
= 224S2D“0 optics conditions at dipole center
121,5,+1;(D, +3)~-24D,p (horizontal emittance) and drift
lengths
D = D, B. = ﬁ&C Foiaie 8x_c Multi-parametric space for
Dmm SlEapr S applying optics stability criteria,
- A - magnet constraints, non-linear
D, =g(s,,8,,8,,0,,5.,D,) optimization, IBS reduction,...




TME optimization for
reducmg IBS

’
 Low cell phase advances can
0.8 minimize IBS growth rates
-0.6 e
O Correspond to large deviation
= 0.6 108 from absolute theoretical
. 2 emittance minimum
0.4} ' o
F 1.2 -
0.27 1 E :E
I-1.4 il
. i EE
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w, [27]

1 Optimal also for minimizing
space-charge tuneshift and
increase momentum compaction

factor
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Wiggler parameter
choice

[ The highest field and smallest
period provide the smallest

emittance

d Lower emittance blow-up due to
IBS for high-field but moderate
period (within CLIC emittance

targets)

J Wiggler prototype in NbTi with
these specs, built at BINP, for
| installation to ANKA (KIT)

% Serving X-ray user community but
L4 o also beam tests

1 Development of higher-field short
models in Nb3Sn at CERN

20 40 60, 80 100 120 140 D. Schoetling et al., PRST-AB 15, 042401, 2012

}Lw [mm]

€ [nm rad]

20 40 60 80 100 120 140
kw [mm]




[ Concrete examples for rings in operation

! High-brightness hadron injectors
d Raising instability thresholds - LHC beams at SPS
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Injectors for high
brlghtness — CERN SPS

~ U LHC injectors upgrade (LIU
project) for High Luminosity LHC
(HL-LHC)
Significantly higher intensity and
brightness is required from injectors,
including the SPS

R. Garoby et al. THPWOO077

Mobile dump
. block (TED)

B. Godard et al. WEPEAO053

Ul Intensity limitations of SPS = WG chaired by E. Shaposhnikova
Beam loading in 200MHz and 800MHz RF system - RF upgrade
Transverse mode coupling instability at injection (TMCI)
Longitudinal instabilities (single and multi-bunch)

Electron cloud for 25ns - coating?



Instability thresholds and
slippage factor

1 Transverse instabilities

TMCI at injection - single bunch instability in vertical plane
O Threshold at 1.6x10%"p/b (g=0.35eVs, t=3.8ns) with low vertical

chromaticity

El
Nip X —1
Y

E-cloud vertical instability for 25ns beam
O Threshold higher than 1.2x10"p/b due to scrubbing

NthOCQsOC\/ﬁl

T. Argyropoulos et al,

D Longi’rudinal instabilities TUPWAO039, TUPWAO040

Single bunch and coupled bunch due to loss of Landau damping
O Threshold at 2x10'%/b for single harmonic RF (800 MHz cavity use is

mandatory)

573
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H. Bartosik et al, HB2012 and TUPME034

d In nominal optics, measured threshold at
1.6x10"p/b for low chromaticity

! High-chromaticity helps increasing threshold, but
also losses along the cycle become excessive

0 Measured threshold in Q20 > 4x10'p/b!!!

Nip X —1)|
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-l Injected single bunches of 3x10'p/b in the LHC for machine studies

| o | SPs-éws.51é|

§ SPS-Q26: € ~0

0 0.5 1 1.5

Intensity at 45(

Losses (%) at injection

10

8t
P
[ ]

6l o«

[ ] ... [ J
4l . .o‘ R Soee
[} i ..
° [ ] [ J °°
2r o ® ®.
: ..
01 2 3 4

PS extracted intensity (p/b)

x 10

11

3e-12| =
- : -
: i .7
. "’
-,
,,,,, e ‘
.:’r f B
rJ
e
s
> 2 2.5 3 3.5

450 GeV/c (p/b)

x1011

20




o (1/m°)

a

12 . ;
- = -Linear fit
10l ® Head tail simulation|;
.®
8[ Pl
/' ~~
s ™
.° £
6[ g =
Lo SNy
4t P AN
.
ol |
0 i i i i i i i i i
0 0.005 0.01 0.015 0.02 0.025 0.5 1 1.5 2 N 2.5 3 35 4
b x10"

Simulations with HEADTAIL code

- Injection energy, uniform cloud distribution,

located in dipole regions More margin with Q20 if e-cloud

O Linear scaling with Synchrotron tune becomes issue for high intensity
demonstrated
[ Clearly higher thresholds predicted for Q20 H. Bartosik et al, IPAC2011
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E. Shaposhnikova

Voltage program 200 MHz RF system Narrow band impedance threshold
10 T 1000 —
o ¢=0.5 eVs
gl gp=0.9 800l £=0.5 eVs
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0 Impedance threshold has minimum at flat top
-l Controlled longitudinal emittance blow-up during ramp for Q26
-1 Less (or no) longitudinal emittance blow-up needed in Q20

O Instability limit at flat bottom
.l Crtitical with Q26 when pushing intensity

.l Big margin with Q20 (factor of 3) AN
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Extraction to the LHC

[ Bunches need to be shortened at flat top to fit LHC bucket
Maximum voltage already used in Q26 (RF system upgrade)
Beam with same longitudinal emittance would have larger bunch length in Q20
L Similar bunch length at flat top in both optics for same longitudinal stability
Smaller longitudinal emittance in Q20
Smaller rms spread in bunch length at extraction with Q20
O Ready for delivery to LHC T. Argyropoulos

et al.
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LHC brightness with
SPS Q20

Operational deployment of Q20 optics for LHC beams THPWO080

Very smooth switch (09/12), allowing around 20% brighter beams on LHC flat
bottom

1.40

Exce“enf brigh-l-ness ©Q20-Beam1-1.07 +/-0.06 <©Q20-Beam2 - 1.05 +/-0.07 A Q26-Beam1 - 0.93+/- 0.07 Q26-Beam? - 0.90+/- 0.05
Preserva‘l'ion be‘l'ween Sps ﬂa"' 1.30 + SPS brightness LHC flat-top Beam1 LHC Flat-top Beam2
bottom and LHC ﬂaf-bo'r’ro.m El.zo » 2T ~—
Opened way for ultra-high =110 o { 4%&@@ TR
brightness beams of Q100 X ® Q\%ﬂiﬁr R -
HL-LHC era 2 2, : : -

| | foso Lafss ==
Delivered also with Q20 £ 0.0 S T Q26
O 25ns beams for LHC & 070 o g —

scrubbing run (12/12) el RS o & } -
Q LHC ion beam during p-Pb TN © ’ - 1

0.50 —— l -
run (01_02(13) 2960 3060 3160 3260 3360

- S Fill #
F. Antoniou et al., TUPME046 |

Work to be done in the LHC for digesting ultra high-brightness beams



Summary

J Optimization of linear optics parameters with direct
impact fo collective effects

d Using analytical and numerical methods

Jd NMC cell design and working point choice in high-
intensity (or high-power) rings

d Conceptual design of ultra-low emittance damping
rings

d Break infensity limitations in operating LHC injector,
without any cost impact or hardware change

J Optics design needs to go beyond single-particle
dynamics and include collective effects for reaching
optimal performance
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