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Abstract

Coherent synchrotron radiation (CSR) is an effect of self-

interaction of an electron bunch as it traverses a curved

path. It can cause a significant emittance degradation and

microbunching. We present a new high-performance 2D,

particle-in-cell code which uses massively parallel multi-

core GPU/GPU platforms to alleviate computational bottle-

necks. The code formulates the CSR problem from first

principles by using the retarded scalar and vector poten-

tials to compute the self-interaction fields. The speedup due

to the parallel implementation on GPU/CPU platforms ex-

ceeds three orders of magnitude, thereby bringing a previ-

ously intractable problem within reach. The accuracy of the

code is verified against analytic 1D solutions (rigid bunch).

INTRODUCTION

Coherent synchrotron radiation (CSR) can lead to a host

of deleterious effects, such as increase in emittance and en-

ergy spread and microbunching instability. First step in mit-

igating these adverse effects is developing a code for high-

fidelity numerical simulation of CSR. Numerical simula-

tions of the CSR effects based on Greens function approach

have proven to be extremely challenging because of the fol-

lowing features of simulation: (i) large memory require-

ment associated with storing the history of the beam bunch;

(ii) difficulty to accurately account for retardation; (iii) large

cancellation between E and B fields in Lorentz force; (iv)

sensitivity to numerical noise, exacerbated by presence of

gradients in relevant equations; (v) the manner in which

self-interactions scale. In this paper, we present a new, 2D

particle-in-cell code for modeling CSR and other collective

effects in an electron beam using state-of-the-art comput-

ing platforms. The proposed method is optimized to run

efficiently on different computing platforms such as GPUs,

multicore CPUs and on hybrid CPU-GPU. This adaptation

of the code design to the new computing architectures re-

sults in unprecedented efficiency and fidelity.

EQUATIONS OF MOTION

The dynamics of electron beams is captured by the

Lorentz force:

d

dt

(

γmev
)

= e (E + β × B) , (1)

∗ Work supported by the Jefferson Science Associates Project No. 712336

and the U.S. Department of Energy Contract No. DE-AC05-06OR23177

(B.T. and K.A), and of the Modeling and Simulation Graduate Research

Fellowship Program by Old Dominion University 2013-2015 (K.A).
† bterzic@odu.edu

where the relativistic β and γ, velocity v, electric field E

and magnetic field B given as, respectively,

β ≡ v/c, γ =
1

√

1 + β2

, v(p) =
p/me

√

1 + p · p/(me c)2

, (2a)

E = −∇φ −
1

c

∂A

∂t
, B = ∇ × A. (2b)

φ and A the retarded scalar and vector potentials, respec-

tively, which are computed by integration of the charge dis-

tribution ρ and charge current density J over the retarded

time t ′ = t − |r − r ′ |/c:

[
φ(r , t)

A(r , t)

]
=

∫ ∞

0


ρ(r ′, t − r−r

′

c )

J (r ′, t − r−r
′

c )


d2 r ′

|r − r ′ |
, (3a)

[
ρ(r , t)

J (r , t)

]
=

∫ ∞

0

[
1

v(p)

]
f (r , p, t)dp. (3b)

r are the particle coordinates, p the particle momentum and

f (r , p, t) is the beam’s particle distribution function (DF) in

phase space, me is electron mass, c the speed of light. It is

important to note thatE = Eext
+Eself, B = Bext

+Bself. Eext

and Bext are external electromagnetic (EM) fields fixed by

the accelerator lattice. Eself and Bself are the EM fields from

the bunch self-interaction, which depend on the history of

the bunch charge distribution ρ and current density J via

the retarded scalar and vector potential φ and A.

As can be seen from Eq. (3a), computation of the retarded

potentials requires integration over the history of the charge

distribution and current density. It points to the main com-

putational bottlenecks of the CSR simulations: (i) data stor-

age for the time-dependent beam quantities (ρ and J); (ii)

numerical treatment of retardation and singularity in the in-

tegral equation for retarded potentials; and (iii) accurate and

efficient multidimensional integration in the equation for re-

tarded potentials.

MODEL

Vlasov-Maxwell equations in CSR simulations can be

solved either directly, by sampling the entire phase space of

the DF, on a grid or in a appropriate basis [1], or by using a

particle tracking approach (e.g., [2, 3]). Computational re-

quirements associated with sampling the entire phase space

limit the direct solvers to low dimensions (usually 1D).

Tracking methods are less restrictive owing to the fact that

the sampling of the phase space is done only through simula-

tion particles. This allows the study in higher-dimensional

systems, which gives them a clear advantage and makes

them a preferred method for modeling CSR effects [4]. We
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use a particle-in-cell (PIC) tracking method [5–7]. PIC

codes sample a particle DF with a large number of point-

particles, which do not interact directly with each other, but

only through a mean-field of the gridded representation.

Calculations in our algorithm are performed in three coor-

dinate frames. Beam dynamics (particle pushing) is done in

the Frenet frame (FF), (x, s), defined so that x ≡ r−r0 is the

horizontal offset from the designed orbit (r0, θ), and s ≡ r0θ

is the longitudinal coordinate. Computation of retarded po-

tentials is performed in the lab frame (LF), (X,Y ), defined

as the Cartesian coordinates in the plane of the beam lattice.

Grid operations and interpolation is done on the grid frame

(GF), (X̃ ,Ỹ ), which is just is scaled and rotated LF.

Outline of the Algorithm

At the top-most level, the new algorithm consist of four

consecutive steps that are computed at each timestep:

1. Deposit the DF sampled by N particles onto a 2D com-

putational grid with resolution (NX ,NY ) using the PIC

deposition scheme described in [5–7], thereby yield-

ing the charge (ρ) and current density (J) on each grid

point. This involves an inverse interpolation from the

particle position to the nearest grid points.

2. Compute retarded potentials on the grid via quadra-

tures defined in Eq. (3a) for all the grid points. This

is by far the most computationally-intensive step.

3. Compute the self-forces from Eq. (1) on the grid. Next,

for each simulation particle compute the self-forces

acting on it by interpolating from the grid. It is re-

quired that the particle deposition onto the grid and

interpolation from the grid onto particles is done in

the same manner, so as to avoid “ghost forces".

4. Use the leap-frog scheme [3] to solve the Lorentz equa-

tion in Eq. (1) to advance particles in time by ∆t.

The steps 1-4 are repeated until the end of simulations.

The coordinates of the rectangular computational 2D grid

are first tilted through angle α from the design orbit in the

(X,Y ) plane, so as to account for the X-Y correlations. The

computational grid Gt = {X̃i ,Ỹj }
i=1,NX

j=1,NY
at time t is con-

structed to envelope all particles such that the outliers in the

tilted plane are binned into the boundary cells. Orienting

the beam in such a way so as to occupy the smallest volume

while containing all the particles yields optimal spatial res-

olution on a fixed-size, rectangular grid. Therefore, at each

timestep, the grid is uniquely described by its tilt angle α,

physical grid size LX and LY and the location of its center

of charge point (X0,Y0).

Computing the Retarded Potentials on the Grid

The retarded potentials φ(Gtk , tk ) and A(Gtk , tk ) for all

the grids points on a grid Gtk at time tk are computed using

the quadrature defined in Eq. (3a) which uses general values

of ρ(Gt , t) and J (Gt , t) found by interpolation. In order to

avoid singularity at r ′ = 0, the integration in Eq. (3a) is

performed in polar coordinates:

[
φ(r, t)

A(r, t)

]
=

Mint
∑

i=1

∫ Rmax

0

dR′
∫ θimax

θi
min

[
ρ(R′, θ′, t − R′

c
)

J (R′, θ′, t − R′

c
)

]
dθ′,

(4)

where Mint is the number of “cuts" (up to 4) of the grid by

the circle of causality t ′ = t − R′/c. Rmax is computed from

the circle of causality in Fig. 1.

Figure 1: Integration for the retarded potential quadrature

in Eq. (4) for a typical grid point. The black lines represent

the limits of integration in θ′.

In Eq. (4), the integrand is given at discrete points, and

not available in a functional form. Also, the integrand along

the outer dimension has regions of high variability as well

as regions where change is gradual. In contrast, the inner

dimension features only regionswhere change is gradual. The

form of data and the nature of integrand determines the ap-

proaches that can be used to evaluate the integral. Newton-

Cotes formulas are the most common numerical integration

methods used when the integrand is either available in func-

tional form and is “well-behaved" along every dimension or

is available only at discrete points. However, when the integ-

rand has regions of high variability then adaptive integra-

tion methods are used. Therefore, the nature of integrand in

Eq. (4) requires an adaptive integration method to solve the

integral along outer dimension and the Newton-Cotes rules

along the inner dimension.

Model Validation

We validate our 2D model for simulation of CSR effects

in electron beams by comparing our simulation to the only

special case for which the exact analytical results are available

– that of a 1D monochromatic rigid bunch [8]. Figure 2

shows perfect agreement between the analytic results and

our simulation for the LCLS bend [3]. It is noteworthy that

each of the curves of the CSR forces represents a difference

between two quantities (c.f., Eq. (2b)), which are over 5 or-

ders of magnitude larger. This attests to the accuracy with

which the computation of retarded potentials is carried out.
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Figure 2: Analytic versus computed effective longitudinal (left) and transverse (right) CSR forces for the LCSL bend [3]:

N = 1024000 particles on a 64× 64 grid, bend radius R0 = 25.13 m, θb = 11.4◦, longitudinal rms beam size σs = 50 µm,

emittance ǫ = 1 nm, and total beam charge of Q = 1 nC.

Table 1: Performance results of (a) the multicore CPU implementation running on a standalone desktop machine using

one core, (b) the multicore CPU implementation using 8 cores, (c) the GPU implementation using one GTX 480 device,

(d) the GPU implementation using 4 GTX 480 device, and (e) the hybrid implementation using all 8 CPU cores and the 4

GTX 480 devices for different sets of input parameters.

Number of Multicore CPU implementation GPU implementation on a standalone system with Hybrid implementation on

Particles Grid Single Core 8 cores Single GPU 4 GPUs multicore CPU with 4 GPUs

(N ) Resolution Time (sec.) Time (sec.) Speedup Time (sec.) Speedup Time (sec.) Speedup Time (sec.) Speedup

102400

32 × 32 73.5 11.1 6.6 1.5 49.0 0.7 105.0 0.7 105.0

64 × 64 878.5 116.2 7.6 16.8 52.3 4.7 186.9 4.5 195.2

128 × 128 13123.2 1695.3 7.7 246.8 53.2 68.4 191.9 65.8 199.4

1024000

32 × 32 58.1 12.7 4.6 1.2 48.4 0.6 96.8 0.6 96.8

64 × 64 573.9 83.9 6.8 11.1 51.7 3.2 179.3 3.1 185.1

128 × 128 7651.5 1000.9 7.6 144.1 53.1 40.1 190.8 38.6 198.2

4096000

32 × 32 57.8 11.9 4.9 1.3 44.5 0.6 96.3 0.6 96.3

64 × 64 452.8 66.5 6.8 9.2 49.2 2.4 188.7 2.3 196.8

128 × 128 5307.5 725.3 7.3 101.4 52.3 27.1 195.9 26.1 203.4

IMPLEMENTATION ON 3 PLATFORMS:

MULTICORE CPU, GPU CLUSTER AND

HYBRID CPU/GPU

We developed a scalable two-phase parallel algorithm

that uses the multicores of underlying architecture to speed

up the computations of CSR simulation. In Phase 1, the al-

gorithm approximates the NX NY different quadratures by

adaptively locating the subregions of different quadratures

in parallel where the error estimate is greater than some user-

specified error tolerance. In Phase 2, it calculates in parallel

the integral and error estimates on these subregions [9, 10].

On the Intel® Xeon® processor with 8 cores, the CSR

simulation using all the 8 CPU cores is up to 7.7 times faster

than the optimized code runningon a single core of the CPU,

yielding a nearly-linear speedup with the number of cores.

On a single GTX 480 GPU, the CSR simulation achives

a speedup of over 50. The number of GPU devices that can

be used per node is limited by the hardware capability of

the underlying compute node (usually 4, as in our cluster;

maximum of 8). For the simulation on 4 GPUs attached to

the same node, the speedup over a simulation on a single

GPU is nearly linear (up to 3.8). We use the cluster imple-

mentation to scale the performance beyond 4 GPU devices.

The speedup will be even more substantial for GPU clusters

with new, more powerful architectures.

The performance of hybrid CPU/GPU implementation is

evaluated on a machine using all 8 CPU cores and 4 GTX

480 GPU devices. The maximum speedup for the hybrid

implementation is nearly the same as that of GPU imple-

mentation using 4 GPU devices. The performance benefit

obtained by using hybrid CPU-GPU implementation is neg-

ligible when compared against the GPU implementation.

The detailed comparison of the three implementations is

shown in Table 1.

CONCLUSION

We presented an innovative, high-performance, high-

fidelity parallel code for simulation of CSR effects in elec-

tron beams using state-of-the-art multicore systems (GPUs,

multicore CPUs, and hybrid CPU/GPU platform). This pi-

oneering implementation on different multicore system re-

sults in a orders-of-magnitude speedup over its serial ver-

sion, thereby bringing the previously intractable physics

within reach for the first time. The parallel algorithm out-

performs the optimized sequential simulation and achieves

a performance gain of up to 7.7 times and over 50 times on

the Intel Xeon E5630 CPU and GTX 480 GPU, respectively.

We also scaled the algorithm on a cluster of multicore sys-

tems. The performance gain of the cluster implementation

scales nearly linearly with the cluster size.
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