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Abstract
A new beam-based method to calibrate the gains of Beam

Position Monitor (BPM) at J-PARC Main Ring has been
developed using Total Least Square fitting (TLS). The use-
fulness of TLS method is evaluated by the simulation. The
gains are analyzed from the data obtained with the beam
mapping for low and high beam intensities, and are deter-
mined with the accuracy within ±0.8% for right electrode
and ±0.6% for up and down electrode.

BEAM POSITION MONITOR AT J-PARC
MAIN RING

Beam Position Monitor (BPM) is one of the essential ele-
ments in a synchrotron facility. Beam positions measured
with the BPMs are used to correct the closed orbit distor-
tion (COD).

Wedefine the "gain" such as theproportionality coefficient
between the signal detected at the ADC and the ideal sig-
nal with no error as shown in Eqs. (1) and (2). The signal
strength from a BPM electrode varies depending on 1) trans-
mission characteristics of a long cable, 2) processing circuit,
and 3) contact resistance at the connected parts. These are
the origin of the gain fluctuation to be corrected by Beam
Based Gain Calibration (BBGC) [1]. A conventional BBGC
method was applied to the BPMs installed at J-PARC Main
Ring (MR), however, the gains have not been corrected ad-
equately because of the difference of the electrode shape.
Therefore, a new BBGC method should be established.

Figure 1 shows the schematic of a BPM used at MR. The
BPM has four electrodes of left (L), right (R), up (U), and
down (D). The signal from each electrode is transmitted to
the processing circuit BPMC and converted to the digitized
signals shown as VL , VR , VU , and VD . Signal strength from
each electrode of the BPM is represented as following.

VL = λ
(
1 +

x
a

)
, VR = λgR

(
1 −

x
a

)
, (1)

VU = λgU

(
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)
, VD = λgD

(
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y

a

)
, (2)

where gR , gU , and gD are defined as relative gains of R,U , D
electrodes divided by the gain of L electrode (gL = 1.0), x
and y denote horizontal and vertical position of the beam,
respectively, λ denotes the line density of the beam charge
with the unit C/mm2, and a represents the effective radius
of the inner surface of the electrode from the BPM center.
Removing x/a, y/a, and λ from Eqs (1) and (2), we can
obtain the relation
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D
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= L, (3)

where VL , VR , VU , and VD are replaced by L, R, U, and D,
respectively, for simplification. If we have n-data sets of
(Li ,Ri ,Ui ,Di) (i = 1, · · · , n), n relations of Eq. (3) can be
expressed using matrix form as
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where G =(GR,GU,GD) are defined as the inverse of the
gains (1/gR, 1/gU, 1/gD). Equation (4) can be represented
as X · G = L, where X and L denote n × 3 matrix and n
data of Li (i = 1, · · · , n), respectively. Firstly, we calculate
the solution G from Eq. (4). Then the gains (gR ,gU ,gD) are
obtained as the inverse of each element in G.
The gains are changed by a different configuration of the

circuit even with the same BPM. For example, the gain
changes depending on a beam intensity because the circuit
configurations have to be changed to accept various signal
strengths generated by different beam intensities. Here, we
show the results of BBGC for two different beam intensities
in RESULTS.
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Figure 1: Diagonal-cut-type BPM at J-PARC MR.

SIMULATION
To solve Eq. (4), we have tested two methods: stan-

dard least squares fitting (LS) and total least squares fit-
ting (TLS) [2]. We evaluated LS and TLS methods by a
simulation as follows [1].

1. Gains are determined to be (gL, gR, gU, gD ) =

(1.00, 1.01, 1.005, 0.975), which are defined as "True
gain".
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2. The signal output voltages (Li, Ri,Ui, Di) (i =

1, · · · , n) are generated according to Eqs. (1) and (2)
corresponding to the five horizontal beam positions as
x = −2,−1, 0,+1,+2 mm and five vertical beam posi-
tions as y = −2,−1, 0,+1,+2 mm. Totally 25 (5 × 5)
positions are prepared for data generation.

3. 500 signal data are generated at each position. Totally
n = 500 × 25 = 12500 data sets are prepared. The data
at one position are distributed by Gaussian distribution
with the relative uncertainty of ∆V/V=0.2% (1 sigma).

4. The data (Ri, Ui, Di) and Li (i = 1, · · · , n) are sub-
stituted to X and L in Eq. (4), respectively. Linear
equations X · G = L are solved by LS and TLS meth-
ods. The gains g = (gR, gU, gD ) are obtained from the
solution G and are evaluated for LS and TLS methods.

Generally, LS method solves the normal equations as follow-
ing. (

XT · X
)
GLS = XT L, (5)

GLS =
(
XT · X

)−1
XT L, (6)

where XT is the transposed matrix of X and
(
XT · X

)−1
de-

notes the inverse matrix of
(
XT · X

)
. The normal equation

for TLS method has a form slightly changed from the Eq. (5)
and (6) as (

XT · X − σI
)
GTLS = XT L, (7)

GTLS =
(
XT · X − σI

)−1
XT L, (8)

where σ represents the eigen value of the 4 × 4 matrix[
(X | L)T · (X | L)

]
and I denotes unit matrix [2]. The

eigen value σ has a meaning of the sum of the squared
distance between each datum (Li, Ri,Ui, Di) and the four-
dimensional plane expressed as −RGR+UGU +DGD−L =
0. The gains obtained by LS and TLS methods (gLS and
gTLS) are listed in Table 1 along with the true gains. In ad-
dition, the positions reconstructed using gLS and gTLS are
plotted in Fig. 2. The positions calculated by not-corrected-
gains of (gR, gU, gD ) = (1.0, 1.0, 1.0), gLS , and gTLS are
plotted by black, blue, and red solid circles, respectively.
The gTLS values successfully reproduce the true gains and
the reconstructed positions are consistent with the mapping
positions (−2 ≤ x ≤ 2, −2 ≤ y ≤ 2). We concluded TLS
method to be useful for BBGC.

Table 1: Gains Obtained by LS and TLS Methods

gR gU gD

True 1.010 1.005 0.975
gLS 1.034 1.015 0.988
gT LS 1.012 1.005 0.977
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Figure 2: Reconstructed positions using 1) not corrected
gains (black), 2) gains obtained by LS method (blue), and
3) gains obtained by TLS method (red).

ANALYSIS
We calculated the gains from the data obtained with ac-

tual beam. In order to obtain the data with mapped beam
positions as in the simulation, the circulating beam orbit was
kicked by a steering magnet. Figure 3 shows the applied
kick angles. The kick angles are ±0.4,±0.2, 0 (mrad) for
one dimensional kick of horizontal (x ′) and vertical (y′) di-
rections, and for (x ′, y′) case, (±0.2,±0.2) and (±0.2,∓0.2)
are applied. Totally 14-position data were obtained for each
BPM. However, some BPMs locate where the beam position
does not change even with a large kick angle (node of the
orbit). We obtained additional data using another steering
magnet located where the phase of the beam orbit differed
by 90 degrees. Besides, we obtained 9 data set for each
position, then, totally n =14 points × 2 sets × 9 data = 252
data were used for fitting.
ObtainedwaveformdatawereFast-Fourier-Transformed

and the signal strength at the frequency of 3.34 MHz, which
was the second harmonic of the RF frequency, was used as
the signal data (Li, Ri,Ui, Di) (i = 1, · · · , n).
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Figure 3: Beam mapping condition.

RESULTS
The gains gR , gU , and gD are plotted in Fig. 4 (a), (b),

and (c), respectively, as a function of the address number
along MR. The gains for two cases of beam intensities (low
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and high) are plotted as blue and red solid circles, respec-
tively. The beam amounts of "Low" and "High" intensi-
ties are 1013 and 1014-order protons per pulse, respectively.
The gains are different by maximally 2–3% between the
cases of "Low" and "High" intensity. The accompanied
error bars are calculated as following. If we define the gen-
eralized inverse matrix

(
XT · X − σI

)−1
as α−1, the diago-

nal components
(
α−1

)
11
,
(
α−1

)
22
, and

(
α−1

)
33

correspond
to the square of the relative errors of GR , GU , and GD ,
respectively. If we assume the uncertainties of each data
(Li, Ri,Ui, Di ) (i = 1, · · · , n) are same, the averaged uncer-
tainty can be expressed by σ in Eq. (8). The uncertainties
of gR = 1/GR is calculated as following.

(∆gR )2 =
(
∂gR
∂GR

)2
(∆GR )2 , (9)

= *
,

1
G2

R

+
-

2 ((
α−1

)
11
σ

n

)
=

(
α−1

)
11

G4
R

σ

n
, (10)

Typical uncertainties of the gains are 0.8% forgRand 0.6%
for gU and gD . Here, since we assume the uncertainty of
∆gL = 0, the uncertainty of gR includes ∆gL and becomes√
2 times larger than ∆gU and ∆gD .
To evaluate the analyzed gains, we checked the consis-
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Figure 4: Gains calculated by TLS method as a function of
the address number. (a) gR , (b) gU , and (c) gD are plotted
with their uncertainties.

tencies of four positions calculated from Eqs. (1) and (2) as
following.

x0 =
L − R/gR
L + R/gR

a, y0 =
U/gU − D/gD
U/gU + D/gD

a, (11)

x1 =
L − R/gR

U/gU + D/gD
a, y1 =

U/gU − D/gD
L + D/gD

a, (12)

x2 =
(

2L
U/gU + D/gD

− 1
)

a, y2 =
(

2U/gU
L + R/gR

− 1
)

a,

(13)

x3 =
(
1 −

2R/gR
U/gU + D/gD

)
a, y3 =

(
1 −

2D/gD
L + R/gR

)
a,

(14)
where (x0, y0) is the position used for practical operation
and (x1, y1)–(x3, y3) are obtained from different form using
two or three electrodes. (x0, y0)–(x3, y3) of one BPM (#015)
are plotted in Fig. 5 (a) and (b) for now used gains and
newly analyzed gains, respectively. (x0, y0), (x1, y1), (x2, y2),
and (x3, y3) are plotted by red, green, blue, and pink solid
circles, respectively. The center of the positions calculated
from analyzed gains are consistent among (x0, y0)–(x3, y3),
while those of used gains show discrepancies. The tilted
correlation between x and y positions observed for (x2, y2)
and (x3, y3) are caused by the fluctuation of λ in Eqs. (1)
and (2).

−8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6

(x3, y3)
(x2, y2)
(x1, y1)
(x0, y0)

x (mm)

y 
(m

m
)

BPM015

(a) (b)

−6 −4 −2 0 2 4 6 8

Figure 5: Consistency check.

SUMMARY
The new BBGC method for BPMs at J-PARC MR has

been developed using TLS fitting. The simulation results
show the usefulness of applying TLS method. The mapping
data have been analyzed and the gains were obtained for
"Low" and "High" intensity cases with an accuracy of 0.8%
for gR and 0.6% for gU and gD . Consistency is checked for
four positions calculated by different form and it is found
that the positions obtained by the analyzed gains successfully
show the consistency. In near future, the COD correction for
practical operation will be tested with the analyzed gains.
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