
A LINEAR ACCELERATOR SIMULATION FRAMEWORK
J. Snuverink, John Adams Institute at Royal Holloway, University of London, Egham, UK

N. Fuster-Martinez, IFIC (CSIC-UV), Valencia, Spain
J. Pfingstner, CERN, Geneva, Switzerland and University of Oslo, Oslo, Norway

Abstract
Many good tracking tools are available for simulations for

linear accelerators. However, several simple tasks need to

be performed repeatedly, like lattice definitions, beam setup,

output storage, etc. In addition, complex simulations can

become unmanageable quite easily. A high level layer would

therefore be beneficial. We propose LinSim, a linear acceler-

ator framework with the codes PLACET and GUINEA-PIG.

It provides a documented well-debugged high level layer of

functionality. Users only need to provide the input settings

and essential code and / or use some of the many imple-

mented imperfections and algorithms. It can be especially

useful for first-time users. Currently the following accelera-

tors are implemented: ATF2, ILC, CLIC and FACET. This

paper discusses the framework design and shows its strength

in some condensed examples.

INTRODUCTION
When simulating linear accelerators or transport lines,

one encounters repeating tasks that are basically the same

for each simulation such as:

• Setting up the model of the beamline and the beam

• Specifying and saving simulation parameters

• Implementing a scripting structure to simulate typical

scenarios

• Implementing of correction techniques

• Implementing imperfections such as ground motion

and component imperfections

• Maintaining scripts to ease computing on a server farm

• Evaluating the results

• Performing backups and keeping track of changes

All these tasks are usually repeated for each simulation

project that is started. As a result, there are a large number of

implementations of very similar code in each beam physics

team, which reduces the productivity significantly.

Instead of this approach, a unified simulation frame-

work for linear accelerators based on PLACET [1, 2] and

GUINEA-PIG [3], named LinSim, is described in this pa-

per. It automates the mentioned tasks and takes a large

(re)implementation burden away from the user. The user

needs only to specify simulation settings and to add the

minimal specific code for the given problem.

Additionally, many correction techniques (e.g. orbit feed-

backs, IP feedbacks, dispersion free steering, wakefield align-

ment, and many other) are already implemented or need to

be implemented only once, which increases productivity and

leads to well debugged code.

Furthermore, LinSim includes more features than would

usually be written, e.g. consistency input parameter checks,

automated settings storing to be able to reproduce the results

at a later stage, revision control, scripts for analysis of results

and many others. This helps to increase the productivity of

the user. Especially (but not only) for newcomers, LinSim

is an enormous starting help, since they don’t have to know

all the details of the already provided simulation scripts.

FRAMEWORK STRUCTURE

Figure 1: Internal structure of LinSim, where scripts (written

in Tcl and Octave) interface the simulation codes PLACET,

a ground motion generator, and GUINEA-PIG. An input file

is used to control the simulations that use additional data

such as lattice files and created standardised output files.

The structure of the framework is illustrated in Fig. 1. It

consists of a set of scripts written in Tcl [4] and Octave [5]

that interface different simulation codes: PLACET is used

for the beam tracking, a ground motion simulator [6] (which

has been ported to C++ and is now included in PLACET)

generates realistic element misalignments, and GUINEA-

PIG facilitates beam-beam simulations. Several types of

imperfections are implemented and can be turned on and off.

Also, many algorithms for the correction of these imperfec-

tions, e.g. beam-based alignment and orbit feedbacks, have

been put in place. LinSim also provides the lattice, beam

and additional information for the accelerators ATF2 [7],

CLIC [8], FACET [9], and ILC [10].

SIMULATION STRUCTURE
A typical simulation consists of two components as de-

picted in Fig. 2. The first part is a set of provided scripts

that make up LinSim itself, together with provided lattice

files and additional data as, e.g. orbit response matrices.

The entry point to LinSim is the script run.tcl, which is

executed with PLACET. The second element of a simula-

tion is the user specific test, which consists of two files: a

settings file and a code file (e.g. test_settings.tcl and

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE029

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

MOPJE029
341

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

test_code.m). These files control the execution of Lin-

Sim and therefore determine the specific simulation. In the

settings file, parameters and settings can be specified that

overwrite the initial ones. In the code file, code can be added

that is linked into the execution of the framework at several

different points to make LinSim as flexible as possible.

The structure of each simulation can be divided in four

parts depicted with different colours:

• Initial setup (yellow): setup_mode
• Seed loop (orange): static_mode
• Long-term loop (blue): long_term_mode
• Short-term loop (green): short_term_mode

Figure 2: Structure of a simulation with LinSim (entry point

is run.tcl), which used external data and is controlled via

two test file, e.g. test_settings.tcl and test_code.m.

Code from test files is linked into four different parts of the

execution, which increases the flexibility significantly.

Note that most simulations will only consist of a subset of

these four parts as, e.g. initial setup and short-term loop. The

specific structure depends on the parameter choice. These

four parts give the user a flexible simulation environment.

The first part of LinSim, the initial setup, will always be

executed (yellow in Fig. 2). It consists of loading the initial

settings and overwriting them with the user specific ones.

Then, the accelerator model and the according beam(s) are

set up. There are many parameters related to the setup of

the accelerator model, which are explained in the manual

[11]. Here only a few important parameters are discussed

necessary for the following explanations and examples:

• machine_name: The accelerator to be simulated:

ATF2, CLIC, FACET, or ILC.

• use_only_one_arm: For a collider (CLIC and ILC),

usually the e− and the e+ parts are simulated and the

created beam can be used for beam-beam simulations.

If the parameter is 1 then only the e− arm is simulated.

The beam can still be collided with itself.

• use_main_linac: The main linac of the accelerator

is used (values 0 or 1).

• use_bds: The beam delivery system of the accelerator

is used (values 0 or 1).

• use_beam_beam: The beam-beam simulations are per-

formed (values 0 or 1).

After the initial setup, the code enters the first of the three

interleaved loops. This first loop (orange in Fig. 2) iterates

over a number of seeds. Each seed corresponds to a different

setup of the imperfections. Then, the user specified code in

the section ”User code: static” of the test file is executed.

This code allows to create user-specific initial imperfections.

As a next step, the execution enters a double loop consist-

ing of a short-term loop (green in Fig. 2) and a long-term

loop (blue in Fig. 2). Each step of the short-time loop corre-

sponds to one beam tracking. The number of iterations can

be controlled via the parameters nr_time_steps_short.

Within each step of the short-term loop the following activi-

ties are performed:

• Apply the specified dynamic imperfections, e.g. ground

motion

• Track the beam(s) through the accelerator

• Collide the beams (if specified)

• Apply already implemented correction methods (if

specified)

• Execute the user code in the test file under ”User code:

short-term”

The short-term loop is the right place to test train-to-train

effects and systems as orbit feedback systems and system

identification schemes.

Since simulating all bunch trains over a long time is com-

putationally expensive, it is often not possible to simulate

effects on larger time scales in full detail. Therefore, the

long-term loop can be used. This loop starts with the cre-

ation of imperfection that corresponds to the time specified

in the variable delta_T_long. Then the short-term loop is

executed, and finally the user specific code in the test file

under ”User code: long-term” is performed. The long-term

loop is repeated nr_time_steps_long times. It is the right

place to test long-term effects such as ground motion and

mitigation methods such as dispersion free steering and IP

feedback.

USAGE
LinSim is started in a terminal with the command

placet run.tcl test_settings.tcl

As can be seen, the code PLACET interprets the script

run.tcl. The script run.tcl reads the test settings file

test_settings.tcl in which the user has specified the

simulation settings in Tcl language. Note that only the test

settings file is passed, since the test code file is specified in

the test settings file in the variable user_code. The code

file, in Octave language, consists of the three sections speci-

fied in Fig. 2. E.g. the first part of code corresponds to initial

misalignments, static imperfections, and initial correction

methods, and has to be filled between the lines

if(sim_mode == static_mode)
...

end

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE029

MOPJE029
342

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

SIMPLE EXAMPLE
This example simulates a luminosity scan over differ-

ent roll settings of the last quadrupole QD0 for CLIC. The

settings file qd0_rollscan_settings.tcl is (with com-

ments preceded by a %):

% code file
set user_code "tests/qd0_rollscan_code.m"
% machine
set machine_name "CLIC"
% scan values in microrad
set values_to_scan

{-100 -75 -50 -25 0 25 50 75 100}
% number of steps, equal to values
set nr_time_steps_short

[llength $values_to_scan]
% nr long time steps (long-term loop not used)
set nr_time_steps_long 1
% specify beam line and beam beam interaction
set use_main_linac 0
set use_bds 1
set use_beam_beam 1
% output directory
set dir_name "QD0_rollscan"

The code file qd0_rollscan_code.m, in Octave language,

consists of the following self-explaining PLACET com-

mands:

% static mode, store initial roll
if (sim_mode == static_mode)
qd0_roll_start =

placet_element_get_attribute(
’electron’, index_qd0(electron), ’roll’)

end

% short time mode, apply new roll setting
if (sim_mode == short_term_mode)
% new roll setting
qd0_roll =

values_to_scan(time_step_index_short) +
qd0_roll_start

% apply to beamline
placet_element_set_attribute(

’electron’, index_qd0(electron),
’roll’, qd0_roll)

end

if (sim_mode == long_term_mode)
% nothing to be done here
end

The simulation in PLACET can be started by:

placet run.tcl qd0_rollscan_settings.tcl

The output data can be plotted with one of the Python scripts

that are provided:

import TrackingAnalysis
a=TrackingAnalysis.MeasurementStation

(directory="../QD0_rollscan/")
a.lumiScanPlot(-100,100,25,label=

’QD0 Roll scan [μrad]’,
plotname=’QD0Roll’)

And finally, the output is shown in Fig. 3, which shows the

CLIC peak luminosity in cm−2s−1 as a function of the roll

of the last focusing quadrupole QD0.

−100 −50 0 50 100

QD0 Roll scan [μrad]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pe
ak

Lu
m

in
os

ity

×1034

Figure 3: Peak luminosity in cm−2s−1 versus QD0 roll.

INSTALLATION
To be able to use LinSim, it is necessary to install

PLACET. If beam-beam simulations should be performed,

also GUINEA-PIG has to be available. The installation in-

structions for PLACET and GUINEA-PIG can be found in

reference [1] and in the LinSim manual [11]. The instal-

lation for LinSim as well as a comprehensive overview is

described in the manual [11]. The manual includes a list of

the implemented algorithms and imperfections, an explana-

tion of the input parameters, a list of the variables available

for usage in user code files, the description of the output files,

an overview of the analysis scripts, and some additional ex-

amples. Furthermore, a chapter is provided on how to add a

new linac, apart from the four already implemented, to the

LinSim framework.

REFERENCES
[1] D. Schulte et al., “The PLACET project", CERN, http://

clicsw.web.cern.ch/clicsw

[2] A. Latina et al., “Evolution of the tracking code PLACET”,

in Proceedings of IPAC, Shanghai, 2013, p. 1014.

[3] D. Schulte, “Study of Electromagnetic and Hadronic Back-

ground in the Interaction Region of the TESLA Collider",

PhD thesis, Universität Hamburg, 1996.

[4] J. K. Ousterhout, “Tcl and the Tk Toolkit". Addison-Wesley

Professional Computing Series, 1994. ISBN: 0-201-63337-X.

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE029

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

MOPJE029
343

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[5] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring,

“GNU Octave: a high-level interactive language for numer-

ical computations", https://www.gnu.org/software/
octave/doc/interpreter

[6] Y. Renier, P. Bambade, and A. Sery. “Tuning of a 2D ground

motion generator for ATF2". Technical Report LAL/RT 08-

18, CARE/ELAN document-2008-005, ATF-08-10, LAL,

2008.

[7] ATF2 Proposal, KEK Report 2005-2.

[8] M. Aicheler, P. Burrows, M. Draper, T. Garvey, et al., “A

Multi-TeV Linear Collider Based on CLIC Technology,"

(2012).

[9] “FACET User Facility", http://facet.slac.stanford.
edu

[10] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, et al.,
“The International Linear Collider Technical Design Report

- Volume 1: Executive Summary, (2013), arXiv:1306.6327

[physics.acc-ph].

[11] LinSim manual, http://clicsw.web.cern.ch/clicsw/
LinSim/LinSim.pdf

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE029

MOPJE029
344

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

