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Abstract
We calculate orbit response coefficients for arbitrarily

coupled lattice which keep the orbit length constant as is

needed to maintain synchronicity with a radio-frequency

system.

INTRODUCTION
In a circular accelerator the orbit correction system and

diagnostic tools such as CALIF [1] or LOCO [2] rely on the

knowledge of how steering magnets affect the beam position

measured at beam position monitors (BPM). Historically

the so-called response coefficients Ci j or response matrix

elements between steering magnet labeled j and BPM i
can be expressed in terms of TWISS parameters or transfer

matrices by

Ci j = Ri j (1 − R j j )−1 (1)

where Ri j is the transfer matrix from location j to location i
and R j j is the full-turn matrix starting at location j . Equa-
tion 1 does not constrain the revolution time, despite the

fact that for example a horizontal steering magnet with kick

angle θ j lengthens the circumference by D jθ j, where D j

is the dispersion at the steering magnet [3, 4]. This can be

accommodated in the response coefficient by an additional

term to Eq. 1 containing the dispersion at the location of the

steering magnet and the BPM

Ci j
12
=

[
Ri j
(
1 − R j j

)−1]
12
− DiD j

ηC
(2)

with the ring circumferenceC and the the phase slip factor η.
In this note we generalize this expression to the fully

coupled case.

COUPLED CASE
The six-dimensional full-turn matrix R j j starting at loca-

tion j maps the orbit vector �x = (x, x ′, y, y′, τ, δ) onto itself
after one turn. If there is a perturbation vector �v present at

location j the requirement for a periodic solution reads

�x = R j j�x + �v . (3)

Note that the requirement to have equal entries in the arrival

time and energy location, constrains the revolution time

to be constant. The solution to this equation is given by

�x = (1 − R j j )−1�v and the top left 4 × 4 part of (1 − R j j )−1
is the response matrix which constrains the revolution time.

This is well-known and used for example in the accelerator

toolbox [5] to determine the closed orbit.

In order to find a generalized version of Eq. 2 and express

the response coefficients in terms of the dispersions we need

to split Eq. 3 in a transverse and longitudinal part. To achieve

this we write the matrix R j j in terms of its 2×2 sub-matrices

R j j =
���

A B C
D E F
G H I

��	 (4)

and split the equation into a transverse and a longitudinal

part

|x〉 = R̂ |x〉 +
(

C
F

) (
τ
δ

)
+ |v〉

(
τ
δ

)
= (G, H) |x〉 + I

(
τ
δ

)
. (5)

here |x〉 denotes the transverse part of the closed orbit vector
�x. Solving the second, longitudinal equation for τ and δ,
inserting in the first equation and collecting terms we arrive

at [
1 − R̂ −

(
C
F

)
(1 − I)−1 (G, H)

]
|x〉 = |v〉 (6)

The matrix in the square brackets is the inverse of the re-

sponse matrix c j j . To express it in terms of the dispersion
we first need to identify the dispersions in a coupled ring. It

is given by the periodic orbit vector subjected to the pertur-

bation defined by the Ri,6 matrix elements, namely

|D〉 = R̂ |D〉 +
������

R16
R26
R36
R46

�����	
. (7)

Consequently we introduce the dispersion-like quantities

with a tilde on top

(
C̃
F̃

)
= (1 − R)−1

(
C
F

)
. (8)

and note that the right column of C̃ and F̃ contains the
dispersions. This leads to[

1 −
(

C̃
F̃

)
(1 − I)−1 (G, H)

]
|x〉 = (1 − R)−1 |v〉 (9)

and the special form of the matrix in the square brackets

permits us to explicitly calculate its inverse with the result

|x〉 =
[
1 +

(
C̃
F̃

)
Q (1 − I)−1 (G, H)

]
(1 − R)−1 |v〉 (10)

where Q is given by

Q =
[
1 − (1 − I)−1

(
GC̃ + HF̃

)]−1
. (11)
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We can exploit the symplecticity of the transfer matrix and

express the matrices G and H in terms of C and F by

G =
1

det I

[
ISCt SA + ISF t SD

]
(12)

H =
1

det I

[
ISCt SB + ISF t SE

]
with the symplectic metric S. Extensive further algebra even-
tually leads to

|x〉 =
[
(1 − R)−1 (13)

−
(

C̃
F̃

)
Q (1 − I)−1

IS
det I

(C̃t S, F̃ t S)
]
|v〉

where C̃ and F̃ are dispersion like quantities and Q is given
by Eq. 11.

PHYSICAL QUANTITIES
In order to connect the expression in Eq. 13 to the com-

monly known equation 2 we need to assume that the matrix

I is given by unity on the diagonal and an R56 which renders
(1 − I) non-invertible. Closer analysis reveals that in that
case we can substitute

(1 − I)−1 →
(

0 0

−1/R56 0

)
(14)

wherever (1 − I)−1 appears. Evaluating Q and substituting
the dispersions |D〉 into C̃ and F̃ in Eq. 13 we can finally
write the response matrix from location j to j as

C̃ j j = (1 − R̂)−1 (15)

− 1
ηC

������
Dx

D′
x

Dy

D′
y

�����	
(
−D′

x, Dx,−D′
y, Dy

)

with the definition of the phase slip factor η and circumfer-
ence C

−ηC = R56 + R51Dx + R52D′
x + R53Dy + R54D′

y . (16)

The response at the BPM i is trivially computed by left
multiplying C̃ j j with the 4 × 4 transfer matrix R̂i j from the

steering magnet to the BPM.

CONCLUSIONS
We calculate the orbit response coefficients for arbitrarily

coupled storage rings in case the revolution time is con-

strained and exciting a steering magnet causes a variation

of the orbit length. The computations only involve manipu-

lations of 6 × 6 transfer matrices that are usually available
from beam optics codes. This makes the method easy to

implement numerically. Expressing the additional term in

terms of the coupled dispersion we arrived in Eq. 15 at a

generalized version of the well-known result from Eq. 2.

Discussions with Xiaobiao Huang, SSRL about the inter-

nals of the accelerator toolbox are gratefully acknowledged.
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