
MULTI-OBJECTIVE GENETIC OPTIMIZATION WITH THE GENERAL 

PARTICLE TRACER (GPT) CODE 

S.B. van der Geer, M.J. de Loos, Pulsar Physics, Eindhoven, The Netherlands 

Abstract 

In a typical design process there are a large number of 

variables, external constraints, and multiple conflicting 

objectives. Examples of the latter are short pulse, high 

charge, low emittance and low price. The classical 

solution to handle such problems is to combine all 

objectives into one merit function. This however 

implicitly assumes that the tradeoffs between all 

objectives are a-priori known. Especially in the early 

design stages this is hardly ever the case. A popular 

solution to this problem is to switch to multi-objective 

genetic optimization algorithms. This class of algorithms 

solves the problem by genetically optimising an entire 

population of sample solutions based on selection and 

recombination operators. The output, the so-called Pareto 

front, only includes solutions that are fully optimized 

where no objective can be improved without degrading 

any other. Here we present numerical studies and practical 

test runs of the genetic optimizer built into the General 

Particle Tracer (GPT) code [1]. 

INTRODUCTION 

GDFMGO is a new multi-objective global optimizer 

for the GPT code. Its internal algorithm evolves a 

population of candidate solutions towards the so-called 

Pareto-front. This front is defined as the set of points 

where it is impossible to improve one objective without 

making at least one other objective worse. The final result 

is a set of points equally spaced at or near the Pareto 

front, where each point is fully optimized in all its 

variables. 

The Pareto front samples, for the given objectives, the 

optimal combination of variables. For two objectives and 

ten variables, the Pareto front is a line through two 

dimensional objective space and ten dimensional variable 

space. In other words, the original problem of having to 

choose the best combination of ten variables has been 

reduced to the one dimensional problem of selecting 

where on the line you want to be. This collapse of 

dimensionality makes multi-objective optimization such a 

powerful tool for decision making. Its power does not 

come from providing the ‘the best’ solution, but from 
reduction of the dimensionality of the problem and 

simultaneously providing insight in tradeoffs between the 

different objectives. 

GDFMGO starts with a fixed size population of 

candidate solutions with variables either chosen randomly 

in a user specified interval or read from file. Typically 

this initial population is very poor in terms of the 

objectives, and probably in violation of a number of 

constraints if present. The idea is to create improved 

candidate solutions based on the solutions already 

present, while gradually removing the worst ones. This 

process is repeated over and over again, and slowly the 

population as a whole evolves in the desired direction. 

Global convergence properties come from the fact that the 

population is pushed gently towards the Pareto front 

instead of steepest descent into a potential local 

minimum. Although there are plenty of pathological cases 

where this does not work, in practice the algorithm finds 

the global optimum in a impressively large number of 

cases with the default parameters. 

The key ingredients of the algorithm are a) creation of 

new candidate solutions based on the existing ones, b) 

ranking the solutions such that the worst can be removed 

and c) a stopping criterion. They are described in detail 

below. 

New Species 

New random samples are created from the existing 

population. The mechanism we use is known as 

Differential Evolution (DE) [2]. To create a new 

combination of variables p, first four random species 

from the population are selected. We denote them u, v, w 

and x. Subsequently, an intermediate point t is calculated 

from u, v and w using: )( vuwt  s . 

The idea is that the new point is close to the existing w, 

but offset with the direction from v to u. To enforce 

convergence, the direction is slightly reduced by a scale 

factor s that must be below 1. In practice using this 

intermediate point t as the new point already works very 

well. However, when the entire candidate solution lies on 

a hyperplane in all variables there is no escape from this 

plane thereby stalling the algorithm. This is where the last 

selected point x comes into play, where there is a 

mutation probability (1-ρ) that variables are selected from 
x instead of from t. To avoid duplicating x at least one of 

the variables must come from t. In equations: 


 


otherwise

]random[0,1

],1[random_int

i

i

i
x

crit
p

ncr   

A lower ρ increases global convergence properties at 
the cost of a slower convergence rate. In practice neither 

the scale factor s nor the mutation rate ρ are critical 
parameters and the defaults of 0.6 and 0.9 respectively 

work fine in most cases. 

New candidate solutions are added until the population 

size is doubled. Then the population is ranked and 

trimmed to the original size again. How this is done is the 

subject of the next section. 

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE076

MOPJE076
492

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



Ranking Procedure: NSGA 
The initial population is based on a random selection in 

all variables. Obviously, such random start conditions 

give poor results in terms of the objectives. The idea is to 

slowly improve this population, but to do this a ranking 

procedure is needed that defines which points are ‘better’ 
and which ones are ‘worse’. In case of a single objective 
this is trivial, since we can simply sort all candidate 

solutions: If the objective needs to be minimized, an 

ascending sorting order gives a natural rank and the 

‘worse’ ones can simply be defined as an upper fraction. 

In the case of multiple and conflicting objectives things 

become more complicated. When a candidate solution 

has, compared to another one, shorter pulse-duration 

(good) but larger emittance (bad) it is not immediately 

clear if this one is better or worse. The idea followed in 

GDFMGO is based on the NSGA algorithm [3], where 

the ranking is based on domination: A point dominates 

another if it is better in at least one objective, and not 

worse in all other objectives. All points that are not 

dominated by any other point are given rank 0. This is the 

set that lies closest to the Pareto front, and these are the 

‘best’ points in our set. The ones with rank 1 are the ones 
that are not dominated by any other point, not taking into 

account points with rank 0. They are the ‘next best’. And 
so forth and so on. The final result is a candidate set that 

is fully ranked based on all objectives. An example is 

shown in Fig 1 where stdx and stdy are conflicting 

objectives to be minimized. Points with small stdx but 

large stdy are correctly assigned the same rank as points 

with large stdx but small stdy. 

 

Figure 1: Multi-objective ranking shown in colours 

ranging from blue, via green and yellow, to red. 

The ranking procedure is used to trim the candidate 

solution. Initially points with the highest rank are 

removed since they are furthest away from the Pareto 

front. When more than 50% of the points have rank 0, 

also particles with rank 0 are removed. This is done in 

such a way that the front is sampled as uniformly as 

possible by removing points with near neighbours while 

keeping the extremities. 

Additional Constraints 

An extra complication in the ranking procedure is that 

in many cases there are additional constraints. An 

example is a spot size as small as possible, under the 

condition that the total charge is larger than 1 pC. With 

just one extra constraint, an intuitive ranking procedure is 

that all candidates that violate the constraint are 

dominated by candidates that do not violate the constraint. 

This allows the rest of the procedure to remain identical, 

and indeed this works just fine. With more constraints 

however it is impossible to define something like the sum 

of all violations. If the spotsize must be smaller than 10 

micron and we are 1 micron off, and if the charge must be 

larger than 1 pC and we are 0.1 pC off, then the total 

violation is 1 micron plus 0.1 pC. These can only be 

added with additional scaling factors, and these typically 

cannot easily be defined. The chosen solution is to only 

count the number of violations, and completely disregard 

information related to how far off a candidate solution 

lies. 

The consequence of the above solution is that when 

most candidates violate  several constraints  there can be 

too much evolutionary pressure. The reason is that 

because of the elitist nature of the algorithm it will not 

temporarily give up on one constraint to fulfil another 

one. This fully undermines the global optimization 

properties of the algorithm. To solve this problem 

GDFMGO uses dynamic constraints: The actual 

constraints are relaxed until at most half the population 

violates the constraint. This causes a much more gentle 

evolutionary push towards zero constrained violations, 

restoring the global convergence properties and fully 

eliminating the need for scaling factors. 

EXAMPLE 

The example shown below describes the optimization 

of a small sub-relativistic UED beamline [4] consisting of 

a 100 keV electrostatic gun, two solenoids and an rf-

compression cavity, as shown in Fig 2. The difficulty in 

the design of this beamline is that the dynamics of the 

first part is entirely space-charge driven, and this in turn 

couples the transverse and longitudinal beam dynamics in 

a non-linear way. 

 

Figure 2: UED beamline to be optimized. 

0 1 2 3 4 5 6 7 8 9 10

GPT stdx [mm]

0

2

4

6

8

10

s
td

y
 [
m

m
]

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE076

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

MOPJE076
493

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Objectives 

In the beamline shown above we have the following 

objectives at the target: a) short pulse length, b) large 

amount of charge, c) large coherence length = low beam 

emittance, and d) small spot-size. The above situation 

with many conflicting objectives is typical, but from 

experience we learned that this is not the most useful way 

to start the design process. It is better to rewrite a few of 

these objectives into 'good enough' constraints. For 

example, for all applications where <100 fs pulse duration 

is 'short enough' it is possible to drop this objective and 

rewrite at as a constraint. Shown in Fig 3 is a colour 

coded representation of the ranking at an intermediate 

step during the optimization, where the constraint at 

100 fs is clearly visible as an abrupt colour change. 

 

Figure 3: Ranking with the additional constraint that pulse 

duration must be below 100 fs. Red points are all worse 

compared to blue and green points. 

In the results shown hereafter we analogously constrain 

the spot size to be below 250 micron. The remaining 

objectives are Charge and Coherence Length. 

Variables 

There are many variables such as locations and 

strengths of solenoids but in this paper only the rf-phase 

and rf-field are shown. An interesting intermediate step in 

the optimization process is shown in Fig 4, where the 

optimizer shows that there is a non-linear tradeoff 

possible between rf-phase and rf-field: The same amount 

of compression is attained by a slight misphasing and 

increasing the field. The final result, not shown, reveals 

that a slight deceleration is beneficial for the compression 

process by compensating higher order effects. 

 

Figure 4: Intermediate result for rf-field versus phase. 

Converged Result 

The final result of the optimizer is shown in Fig 5, 

where a nicely converged Pareto front for Coherence 

length versus Charge is given. This collapses the N-

dimensional variable space into a 1D parametric curve 

where for each point along the curve all settings 

(solenoids, cavity settings, etc) are known. The problem 

of finding the correct settings for all variables is now 

reduced to deciding on the 'operating point' along a 

1 dimensional curve. 

 

Figure 5: Final Pareto front for Charge versus Coherence 

length, taking into account that pulse duration must be 

below 100 fs and spotsize below 250 micron. 

MPI IMPLEMENTATION 

There is an MPI implementation of the genetic 

optimizer that spawns GPT runs load-balanced on MPI 

clusters. In order to do this, we had to relax the notion of 

generations and immediately spawn a GPT run the 

moment a new computational node is available. This can 

result in generations being mixed. We have seen no 

performance degradation because of this, and achieved 

almost 100% load levels on a 100-node MPI cluster for 

optimization problems with dozens of variables, several 

conflicting objectives and many constraints. 

CONCLUSION 

Multi-objective genetic optimization is a valuable tool 

to aid the design of accelerators and beamlines, 

particularly when there are non-linear effects and when 

there is mixing between the different phase-planes. We 

expect that continuing advances in computing power will 

further increase the usefulness of this approach in the 

foreseeable future. 

REFERENCES 

[1] The General Particle Tracer (GPT) code, Pulsar 

Physics, The Netherlands: http://www.pulsar.nl/gpt/. 

[2] R. Storm, K. Price, Journal of Global Optimization, 

Kluwer, Vol. 11, pp. 341 (1997). 

[3] Kalyanmoy Deb, IEEE Trans. on. Evolutionary 

comp., Vol 6, No 2, pp 182 (2002). 

[4] T. van Oudheusden, P. L. E. M. Pasmans, S. B. van 

der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. 

Luiten, Phys. Rev. Lett. 105, 264801 (2010). 

1 2 5 10 20 50 100

GPT Charge [fC]

100

1000

P
u
ls

e
 l
e
n
g
th

 [
fs

]

1.5 2.0 2.5 3.0 3.5 4.0

GPT E-field [MV/m]

-1000

-500

0

500

1000

p
h
i 
[m

ra
d
]

1 2 5 10 20 50

GPT Charge [fC]

1

2

5

10

20

C
o
h
e
re

n
c
e
 l
e
n
g
th

 [
n
m

]

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPJE076

MOPJE076
494

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques


