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Abstract
The transverse modes and the intrinsic Landau damping in

Gaussian bunched beams with space charge are numerically
investigated. The evolution of the phase space density is
calculated with the Synergia accelerator modeling package
and analyzed with Dynamic Mode Decomposition (DMD)
method. DMD is a relatively new technique used to calculate
mode dynamics in both linear and nonlinear systems. The
properties of the first three space charge modes, including
their shape, damping rates and tune shifts are calculated over
the entire range of the space charge interaction.

INTRODUCTION
Landau damping provides an important mechanism for

stabilizing beam propagation. The mechanism operates via
an energy exchange between the potentially unstable coher-
ent mode and some resonant particles. A necessary con-
dition for the Landau damping mechanism is the existence
of resonant particles with a continuous frequency spectrum
around the coherent frequency. In accelerators, aside from
the tune spread due to nonlinear lattice elements, there is a
tune spread caused by the space charge interaction which
plays an important and not-well-understood role in the damp-
ing mechanism. Here we neglect the nonlinear lattice effects
and focus only on the intrinsic effect of space charge on the
transverse modes of a Gaussian bunch. The beam dynamics
are investigated over the entire range of the interaction, from
no space charge to the strong space charge limit.
The effect of space charge on the head-tail modes was

first addressed by Blaskiewicz [1] who showed that space
charge can improve beam stability. The strong space charge
regime for bunches of arbitrary shape was addressed analyt-
ically in [2, 3]. The mode shapes, tune shifts and damping
rates were calculated for Gaussian bunches. A numerical
investigation of the transverse modes in longitudinal Gaus-
sian bunches with K-V transverse distribution using particle
tracking simulations was done by V. Kornilov et al. [4]. Our
simulations for bunches with K-V charge distribution (not
shown here) are in agreement with the ones in Ref [4].

ANALYTICAL RESULTS
The tune shift for a particle propagating through a lattice

and experiencing a transverse space charge force eEx

γ2
is [5]

∆Qsc =
e

mγ3 β2c2
1
4π

∮
β(s)

∂Ex

∂x
( x̄, s)ds . (1)

where β(s) is the lattice beta function.
∗ Work supported by U.S. Department of Energy contract DE-AC02-
07CH11359.

We define the transverse displacement density as

X (z,u, s) =

∫
dxdpxdydpy xρ(x,px , y,py , z,u, s)

ρ(z,u)
(2)

where ρ(x,px , y,py , z,u, s) is the density in phase space with
z being the longitudinal position relative to the reference
particle and u = δp

p being the relative momentum spread.
Following Ref [3] and defining X (z,u) such as

X (z,u, s) = X (z,u)e(−iω0Qs−iχz) (3)

where ω0 is the reference particle angular velocity and χ is
the effective chromaticity one gets the equation of motion

(Q −Qβ )X (z,u) + iQs
∂X
∂θ

(z,u) = (4)

−∆Qsc eff(z)(X (z,u) − X̄ (z)) ,

with θ being the synchrotron oscillation phase. ∆Qsc eff(z)
is the effective space charge tune shift. For a Gaussian beam
we define the space charge parameter as

qeff =
∆Qsc eff max

Qs
= 0.52

∆Qsc max

Qs
(5)

where ∆Qsc max is the maximum tune shift (at the beam cen-
ter) and Qs is the synchrotron tune. This definition is in
agreement with the one in Ref [2]. For a Gaussian beam the
effective tune shift is about 0.52 smaller than the maximum
tune shift [2]. In order to determine qeff we numerically
calculate the integral in Eq. 1 using the electric field from
the simulation.
When the space charge is zero there is a simple solution

to Eq. 4,

X (z,u) ≡ X (r, θ) = R(r)eimθ , (6)

with r and θ being the amplitude and the phase of the syn-
chrotron oscillation. The tune shift is given by

Q −Qβ = mQs (7)

for integer m. The modes are defined by the angular number
m and are radially degenerate.
Large qeff requires solutions which are weakly dependent

on u, i.e. X (z,u) ≈ X (z). A detailed calculation of the
modes properties is presented in [2, 3]. The strong space
charge modes form an orthogonal set∫

Xk (z)Xm (z)ρ(z) = δkm , (8)

where k and m represent mode numbers. For the mode k
the tune shift is νkQs

qeff
(the values of νk are tabulated in [2]),

while the Landau damping is λk = k42πQs

q3
eff

.
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SIMULATION
Dynamic Mode Decomposition (DMD) is a data-driven

algorithm used for modal analysis and model reduction in
both linear and nonlinear systems [6–8]. Developed initially
by the fluid mechanics community to address turbulent flows,
it has proven a successful tool in many different areas [6–10].
One important feature of this method is the direct calcula-
tion of mode dynamics, including mode shape, frequency
and growing/damping rates. The algorithm description and
implementation for beam modes analysis can be found else-
where [11].

For this study we employ the Synergia accelerator model-
ing package [12, 13] to simulate the propagation of a single
Gaussian beam through a linear lattice consisting of drift,
quadrupole and rf cavity elements. The single particle dy-
namics is purely linear. The chromaticity is zero and the
longitudinal potential is parabolic. Space charge is calcu-
lated with a 3D Poisson solver with open boundary condi-
tions [14]. The transverse displacement density, X (z,u, s),
is stored every turn and analyzed using Dynamic Mode De-
composition.

RESULTS
The zeromode corresponds to the transverse displacement

of the beam as a whole, i.e. X (z,u) is constant. In our model
which neglects the wake fields and lattice nonlinearites its
dynamics is described by a simple betatron oscillation.
To validate our simulations we start in the strong space

charge regime where comparison with theoretical results
can be done. In agreement with the theory [2, 3] we find
that the modes’ spatial distribution is nearly independent
of the momentum coordinate u. In Fig. 1 we compare the
first four modes dependence on z with the theoretical shape
calculated in Ref [2]. The agreement is very good.
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Figure 1: Comparison of the simulated modes’ shape with
the theoretical one [2] in the strong space charge regime.
The agreement is good.

In order to study the evolution of the strong space charge
modes into the weakly interacting regime we excite the beam
with excitations proportional to the shape of the strong space
charge modes. Among the many excited modes we choose
for investigation the ones which have the largest overlap with

Figure 2: The mode 2 longitudinal distribution, X2(z,u), for
different values of the space charge parameter qeff. Without
space charge, X2(z,u) ∝ ei2θ . With increasing qeff, X2(z,u)
transforms gradually to the strong space charge mode 2. At
large qeff X2(z,u) can be described by a purely real function.
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Figure 3: The overlap < XkYk > (see Eq. 9) in the longi-
tudinal phase space of the mode k with the strong space
charge space mode k for k = 1,2,3. At small qeff the overlap
increases rapidly with increasing qeff. For q > qck (qc1 ≈ 4,
qc2 ≈ 7, qc3 ≈ 9) the increase of < XkYk > with qeff sat-
urates indicating the transition to the strong space charge
regime.

the strong space charge modes. These are also the modes
which changes smoothly when going form large to small qeff.

We calculated the first three modes spatial distribution
in the longitudinal phase space for different values of qeff.
When qeff = 0 the modes are characterized by the the an-
gular number m = k (where k is the mode number), i.e.
Xk (z,u) ≡ Xk (r, θ) = Rk (r)eikθ . With increasing qeff
the modes transform gradually into the strong space charge
modes. While at small qeff the real and the imaginary part
of the modes have comparable magnitudes, at large qeff the
modes can be described by purely real functions. For illus-
tration we show in Fig. 2 the mode 2 shape evolution from
the noninteracting to the strong space charge regime.
The spatial overlap of the mode Xk (z,u) with the strong

space charge mode Yk (z) (i.e. Yk ≡ Xk (qeff = ∞)),

< XkYk >=
∫

X∗k (z,u)Yk (z)ρ(z,u)dzdu, (9)

as a function of qeff is presented in Fig. 3. At small qeff the
overlap increases rapidly with increasing qeff. At large qeff
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Figure 4: The Landau damping for modes 1, 2 and 3 ver-
sus the space charge parameter qeff. Ts is the synchrotron
period. At small qeff the damping increases quickly with
increasing qeff. In the strong space charge regime we find
that λ ≈ 2.4 k42πQs

q3
eff

, where k is the mode number (dashed

lines). Up to a proportionality factor which we find to be
sensitive to beam transverse distribution, this behavior is in
agreement with the theoretical predictions of Ref. [2]. The
proportionality factor of 2.4 is characteristic to transverse
Gaussian beams.
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Figure 5: The relative tune shift, Q−Qβ

Qs
, for the modes 1, 2

and 3 versus the space charge parameter qeff. In the strong
space charge regime, q > qck , ∆QQs

≈
νk
qeff

, in good agree-
ment with the theoretical prediction [2] (dashed lines). The
values of the constants νk are tabulated in Ref. [2].

the overlap slope is much smaller. For every mode we can
determine the space charge parameter qck where the increase
of < XkYk > with qeff shows signs of saturation and define it
as the point where the transition to the strong space charge
regime takes place. An estimate for the first three modes is
qc1 ≈ 4, qc2 ≈ 7 and qc3 ≈ 9. These values are consistent
with the estimates based on damping and tune shift behavior,
as shown below.
The Landau damping for the first three modes is shown

in Fig. 4. All three modes display a similar behavior. At
small qeff the damping increases quickly with increasing
qeff. The damping reaches its maximum in the intermediate
region. The maximum damping and the corresponding qeff
increases with the mode number. For qeff > qck the damping

λ ≈ 2.4 k42πQs

q3
eff

. This dependence is in good agreement with

the theoretical predictions of Ref [2] up to a proportionality
factor. As simulations with K-V beams shows (not shown),
the proportionality factor is sensitive to the transverse bunch
distribution. The value of 2.4 is characteristic to transverse
Gaussian beams.

In Fig. 5 the tune shifts for the first three modes as a func-
tion of qeff are shown. Starting from the non-interacting
value of Q = Qβ + kQs , the tune is suppressed with increas-
ing qeff. In the strong space charge regime (i.e. q > qck )
Q−Qβ

Qs
≈

νk
qeff

in good agreement with the theoretical esti-
mate [2]. νk are constants coefficients specific to each mode
and were calculated in Ref. [2].

CONCLUSIONS
A numerical investigation of the transverse modes and

intrinsic Landau damping in Gaussian bunched beams with
space charge is presented. The phase space density and
the transverse displacement density are simulated using the
Synergia accelerator simulation package. The Dynamic
Mode Decomposition technique is used to extract the modes’
properties from the simulated data.
As the strength of the space charge is increased, the

modes’ shapes change gradually from the radially degen-
erate non-interacting modes to the momentum-independent
space charge modes predicted by the theory. Based on the
evolution of the modes shape, damping and tune shift with
increasing qeff, we estimate qc1 ≈ 4, qc2 ≈ 7 and qc2 ≈ 9
as threshold values which define the strong space charge
regime for the first three modes.
In the strong space charge regime the damping for the

Gaussian beams is ≈ 2.4 k42πQs

q3
eff

. The modes’ tune shift is

in agreement with the theoretical predictions and equal to
νkQs

qeff
, where νk constants are tabulated in Ref. [2].

The damping reaches maximum in the intermediate re-
gion. Both the maximum damping and the corresponding
value of qeff increase with the mode number. The space
charge mode k connects with a non-interacting mode with
the angular number m = k upon decreasing qeff.
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