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Abstract 
Spherical aberration in axially symmetric magnetic 

focusing lenses results in an S-shape figure of beam 
emittance. Filamentation of beam emittance in phase 
space is a fundamental property of a beam affected by 
aberrations. An analytical expression for effective beam 
emittance growth due to spherical aberration is obtained. 
Analysis is extended for intial emittance growth in drift 
space and within a focusing channel, induced by beam 
space charge. 
 

 

BEAM EMITTANCE GROWTH IN AXI-
AL-SYMMETRIC LENS 

 

Beam dynamics in an axially-symmetric field may be 
severely affected by spherical aberrations, which results 
in beam emittance growth. Magnetic field of the focus-
ing lens can be approximated as 
 

B(z) 
Bo

1 (z / d)n  ,  (1) 

 
where Bo  is the peak field, and d  is the characteristic 

length. Parameter n = 2 corresponds to the well-known 
Glazer model [1] for short length/diameter lenses, while 
in many cases the field of a solenoid is better approxi-
mated by n = 4, which yields a flatter distribution. 

Let us estimate the emittance growth of a beam dur-
ing its passage through the lens. We assume that the 
position of the particle is not changed while crossing the 
lens, and only the slope of the particle trajectory is al-
tered. The transformation of particle variables before 
(ro ,  ro

' )  to after (r,  r ' )  lens-crossing is given by [2]: 
 

r  ro  ,  r '  ro
' 

r

f
(1Cr2 ) , (2) 

 

where f  (4 / D)(mc / qBo )2  is the focal length of the 

lens, D  is the effective length of the lens, and C  is the 

spherical aberration coefficient. For the Glazer model 
D  ( / 2)d , C  0.25d2 , and for n  4  

D  d3 / 4 2 , C  (5 /12)d2

 [3]. In many applica-

tions, the spherical aberration coefficient can be ex-
pressed through solenoid sizes as C  5 / (S  2a)2 , 

where 2a  is the pole piece diameter and S is the sole-
noid pole gap width [4]. 

Suppose that the initial phase space volume of the 
beam with radius R is bounded by the ellipse 
_______________________ 
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ro
2

R2  
ro

' 2


R2  ,           (3) 

 

where   is the unnormalized beam emittance. To find 
the deformation of the boundary of the beam phase 
space after passing through the lens, let us substitute the 
inverse transformation ro  r , ro

'  r ' (r / f )(1Cr2 )  

into the ellipse equation, Eq. (3). The boundary of the 
new phase space volume, occupied by the beam after 
passing through the lens at phase plane (r,  r ' )  is given 

by: 

r2

R2  
R2


(r '

r

f
C

r3

f
)2  .             (4) 

 
Let us introduce new variables (T, ) arising from the 
transformation: 

r

R
 T cos ,       (r '

r

f
)

R


 T sin .    (5) 

 
In terms of the new variables, the shape of the beam 
emittance after lens-crossing is 
 

T  2T 2 sin cos3 T 3 2 cos6  1 ,            (6) 

 
where the following notation is used 
 

 
C R4

f 
 .                               (7) 

 
Without nonlinear perturbations,   0 , and Eq. (6) 
describes a circle in phase space. Conversely, if  0 , 
Eq. (6) describes an S – shape distorted figure of beam 
emittance (see Fig. 1). Accordingly, filamentation of 
beam emittance in phase space is a fundamental property 
of a beam affected by aberrations. 

Being symplectic in nature, the transformation, Eq. 
(2), conserves phase-space area. However, the effective 
area occupied by the beam, increases as a result of the 
encounter. Let us determine the increase in effective 
beam emittance as a square of the product of minimum 
and maximum values of T: 
 

eff


 TminTmax

 
.                            (8) 

 
The values Tmax, Tmin are determined numerically from 
Eq. (6). Dependence of the emittance growth on the pa-
rameter  is shown in Fig. 2. 

Qualitatively, this relationship can be approximated 
by the function: 
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Table 1. Coefficients in Emittance Growth for Different 
Beam Distributions. 

 
Distribution 

 
K 

Eq. (10) 
K  

Eq. (15) 
W /Wo  
Eq. (19) 

KV 0.0556 0 0 
Water Bag (WB) 0.114 0.094 0.01126 
Parabolic (PB) 0.164 0.187 0.02366 
Gaussian (GS) 0.541 0.55 0.077 

 

  
 
Figure 1: Distortion of beam emittance due to spherical 
aberrations, Eq. (6): (left)   0 , (right)   1.6 . 
 

 
 

Figure 2: Effective beam emittance as a function of pa-
rameter  , Eq. (7): (solid) Eq. (8), (dotted) Eq. (9). 
 

eff


 1 K 2  ,                            (9) 

 
where the parameter K ≈ 0.4. Substitution of Eq. (7) into 
Eq. (9) gives the following expression for effective 
beam emittance growth: 
 

eff


 1 K (

C R4

f 
)2 .                 (10) 

 
Equation (10) was tested numerically for a round 

beam with different particle distributions. Simulations 
were performed with macroparticle code BEAMPATH. 
As a measure of effective beam emittance, the four-rms 

beam emittance   4  x2  x '2    xx ' 2 was used 

and a two-rms beam size, R  2  x2  , was used as a 

measure of the beam radius. Simulations confirm that the 
dependence given by Eq. (10), is valid for four-rms beam 
emittance, although the coefficient K depends on the 

beam distribution (see Table 1). Fig. 3 illustrates beam 
emittance growth of the beam with a Gaussian distribu-
tion due to spherical aberration. 
 

SPACE CHARGE INDUCED BEAM 
EMITANCE GROWTH IN DRIFT SPACE 

 

Non-linear space charge forces inherent to a non-
uniform beam act on the beam as a non-linear lens. The 
developed analysis can be applied to determine space-
charge induced beam emittance growth. Consider the 
initial stage of beam drift in free space at a certain dis-
tance z, where radial particle positions are not changed 
significantly, but the momentum distribution is already 
affected by the space charge field of the beam, Eb (r) . 

Change in the radial slope of the particle trajectory is 
given by 

r '  ro
' 

qzEb (r)

mc2 2 3 .  (11) 

 
Consider a Gaussian beam in drift space. The space 
charge field of the beam is approximated as: 
 

Eb (r)  I  
1-exp(-2r2 / R2 )

2ocr


I

oc

r

R2 (1-
r2

R2  ..) ,    (12) 

 
where I is the beam current. Substitution of Eq. (12), into 
Eq. (11) results in a transformation, Eq. (2), where  
 

1

fb

  4
I

Ic ( )3

z

R2  ,      C  
1

R2  ,       (13) 

 
and Ic  4omc3 / q  = 3.13x107 A / Z  [Amp] is the 

characteristic beam current. Parameter  , Eq. (7), which 
determines the effect of spherical aberration on the beam 
emittance is therefore 
 

 
C R4

fb 


4

 3 3

I

Ic

z


 .  (14) 

 
Substitution of Eq. (14) into Eq. (9) results in the follow-
ing expression for the initial beam emittance growth in 
free space due to space charge: 
 

eff


 1 K (

I

Ic 
3 3

z


)2 .  (15) 

 

The parameter K  was determined numerically for 
different distributions (see Table 1). As follows from Eq. 
(15), initial emittance growth does not depend on initial 
beam radius. The same result was obtained in Ref. [5] 
for emittance growth of the beam with an initial wa-
terbag distribution and initial zero emittance in free 
space, defined as eff  0.298 z I / (Ic

3 3 ) . This expres-

sion coincides with Eq. (15) for  = 0, K  0.094 . 
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Figure 3:  Emittance growth of the beam with Gaussian 
distribution in a lens with   1.6 , Eq. (7). 
 

  
Figure 4: Emittance growth of a 150 keV proton beam 
with initial Gaussian distribution, current I = 1.11mA 
and beam emittance   0.039  cm mrad  in drift space 

of length z = 100 cm. 

 
Drift 

 
 

FODO Channel 

 
Figure 5: Emittance growth of a 50 keV proton beam 
with current I = 20 mA and emittance 
  4.64  cm mrad  in drift space and in FODO focus-

ing channel for different distribution (see Table 1): (sol-
id) numerical solution, (dotted) initial emittance growth 
determined by Eq. (15). 

BEAM EMITANCE GROWTH IN FOCUS-
ING CHANNEL 

Within the context of the smooth approximation, the 
radial equation of motion of a particle in combination of 
linear focusing field and space charge field is  
 

d 2r

dz2  
o

2

L2 r 
qEb (r)

mc2 2 3 ,  (16) 

 

where o  is the phase advance of transverse oscillations 

in a focusing channel per period L of the focusing struc-
ture. In the beginning of beam transport, the change of 
slope of particle trajectory can be represented as a com-
bination of a kick arising from the focusing field, and 
that arising from the space charge field: 
 

r '  ro
' 

r

fext


r

fb

(1Cr2 ) , (17) 

 

where fext  L2 / (oz) . Eq. (17) can be rewritten as Eq. 

(2) with an effective focal length f , and effective aberra-

tion coefficient C  defined as 
 

1

f


fb  fext

fb fext

,    C  C
fext

fb  fext

. (18) 

 

From Eq. (18), the ratio of effective aberration coeffi-
cient to effective focal length is the same as that for the 
beam in drift space, C / fb  C / f . Therefore, initial 

emittance growth in focusing channel is determined by 
the same Eq. (15). Final emittance growth of an rms-
matched beam in a focusing channel is limited by beam 
intensity redistribution (“free energy” effect) [6]: 

 f


 1

2

( )3

I

Ic

(
R


)2 (

W

Wo

)  ,   (19) 

 

where W /Wo is the free energy coefficient, depending 

on the initial beam distribution (see Table 1). Emittance 
growth in focusing channel takes place at the distance 
equivalent to quarter of plasma oscillation amplitude of 
an infinitely large beam [6]: 
 

z 

4

R
Ic

I
( )3 .  (20) 

 

Figure 5 illustrates beam emittance growth of a proton 
beam in drift space as well as in a FODO focusing chan-
nel. As seen, Eq. (15) gives good approximation of emit-
tance growth at the initial stage. 
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