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Abstract

We propose a method to measure and correct storage ring

linear optics and coupling with turn-by-turnBPM data. The

independent component analysis (ICA) is used to obtain

the amplitudes and phase advances of the betatron normal

modes, which are compared to their counterparts derived

from the lattice model. By fitting the model to the data

with quadrupole and skew quadrupole variables, the linear

optics and coupling of the machine can be obtained. Simula-

tion demonstrates that errors in the lattice and BPM parame-

ters can be recovered with this method. Experiments on the

NSLS-II storage ring show that it can find the same optics

as the linear optics from closed orbit (LOCO) method.

INTRODUCTION

The linear optics of a storage ring is often distorted by var-

ious error sources such as systematic and random errors of

quadrupole magnets, feed-down effect from orbit offsets in

sextupole magnets, and perturbations by insertion devices.

The machine with distorted optics has large beta beating and

phase advance deviation, which would have a negative im-

pact on the nonlinear beam dynamics performance, result-

ing in reduced dynamic aperture and/or Touschek lifetime.

There is also a need to accurately implement the design op-

tics in order to deliver certain beam properties to users or

to facilitate beam diagnostics and beam protection systems.

Therefore, optics correction is of crucial importance for stor-

age ring operation. The uncorrected machine may also have

a large linear coupling, which needs to be corrected in order

to reduce the vertical emittance.

The LOCO method [1] is widely used for both linear op-

tics and coupling correction for storage rings. It fits the mea-

sured orbit response matrix data to a lattice model, from

which one can derive the required quadrupole and skew

quadrupole adjustments for optics and coupling correction.

This method is very effective if care is taken to avoid the

weakly constrained directions of parameter space from hav-

ing large contributions in the corrections [2]. A main disad-

vantage of the LOCO method is that it is time consuming to

measure the orbit response matrix. Depending on the size

of the ring and the ramp rate of the corrector magnets, the

time for measuring the orbit response matrix may vary from

10 min to a few hours.

Similar to the orbit response matrix, turn-by-turn (TBT)

BPM data taken when beam undergoes coherent betatron

oscillation contain valuable information of the linear optics

of the machine. Taking TBT BPM data requires only a few
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seconds and is nearly non-invasive to the beam. There have

been previous proposals and experimental studies on the

use of TBT BPM data to measure and correct optics [3–6].

There have also been studies that utilize TBT BPM data

to correct linear coupling [7, 8]. These methods typically

treat in-plane optics correction and coupling correction sep-

arately, despite the fact that TBT BPM data contain optics

and coupling error information simultaneously, much the

same as the orbit response matrix data.

In this study we propose a method to simultaneously mea-

sure and correct linear optics and coupling with TBT BPM

data. Similar to LOCO, quadrupole and skew quadrupole

variables in the lattice model are varied to fit the measured

data, resulting in a calibrated lattice model. The indepen-

dent component analysis (ICA) method is employed to re-

trieve the normal mode components for each BPM, which

are then compared to model calculations.

In the following we will give a description of the method

and present simulation and experimental results.

DESCRIPTION OF THE METHOD

With linear coupling, the beam motion observed on each

plane of a BPM is a combination of two normal modes.

The ICA can separate the normal modes simultaneously for

all BPMs and obtain the beam motion at each BPM in a

form [3]

xn=A cosΨ1(n)− B sinΨ1(n) + c cosΨ2(n) − d sinΨ2(n),

yn=a cosΨ1(n) − b sinΨ1(n) + C cosΨ2(n)−D sinΨ2(n),

(1)

where xn and yn are observed beam positions for the x and

y planes at the n’th turn, respectively, Ψ1,2 (n) = 2πν1,2n +

ψ1,2, and ν1,2 and ψ1,2 are the tunes and initial phases of the

normal modes. Note that ψ1,2 are equal for all BPMs.

On the other hand, the phase space coordinates X =

(x, x′, y, y′)T are related to the normal mode coordinates

Θ =





√
2J1 cosΦ1

−
√

2J1 sinΦ1√
2J2 cosΦ2

−
√

2J2 sinΦ2





(2)

via a transformation X = PΘ, where J1,2 and Φ1,2 are the

action and phase variables for the two normal modes, re-

spectively [9]. Explicitly,

x = p11

√

2J1 cosΦ1 +
√

2J2(p13 cosΦ2 − p14 sinΦ2),

y =

√

2J1(p31 cosΦ1 − p32 sinΦ1) + p33

√

2J2 cosΦ2, (3)

where we have made use of the fact that p12 = p34 = 0 by

definition of P and Φ1,2. The phase variables Φ1,2 advance
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from one location to another and increment by 2πν1,2 in

one turn, respectively. Therefore, amplitudes and phases of

the normal mode components in the x and y planes can be

calculated with elements of the P matrix. The amplitudes

are related by

√

A2 + B2
= 2J1p11,

√

c2 + d2
= 2J2

√

p2
13

+ p2
14
,

√

C2 + D2
= 2J2p33,

√

a2 + b2
= 2J1

√

p2
31

+ p2
32
. (4)

Apart from the initial phases that can be subtracted, the

phase variables are related by

tan−1 B

A
= Mod2π (Φ1),

tan−1 d

c
= Mod2π (Φ2 + tan−1 p14

p13

),

tan−1 b

a
= Mod2π (Φ1 + tan−1 p32

p31

),

tan−1 D

C
= Mod2π (Φ2). (5)

The P matrix can be computed from the one-turn transfer

matrix T with the numerical procedure given in Ref. [9] or

alternatively with equation P = VU, with matrices V and

U given by analytic formulas in Ref. [10].

The differences between the measured and calculated am-

plitudes and phases can be put in a least-square problem,

with each term normalized by a suitable uncertainty sigma.

The constants J1,2 can be found by equating the average

measured and model amplitudes for the in-plane normal

modes, i.e., the first and third equations in Eq. (4). Horizon-

tal and vertical dispersion functions can also been measured

and included in as fitting data. Errors of the horizontal dis-

persion function are an important measure of the horizon-

tal linear optics. The vertical dispersion is a major contri-

bution of vertical emittance. Therefore, including the dis-

persion functions in the least-square problem is important.

The three types of contribution in the least-square problems,

namely, amplitudes, phases and dispersion functions, may

be given different weights to emphasize our confidence in

the measurements. For example, the phases could be given

higher weight than the amplitudes as the latter is affected by

the BPM calibration.

In reality BPMs have calibration and roll errors. These

parameters can be included in the fitting scheme. The fit-

ting parameters are the quadrupole and skew quadrupole

strengths in the lattice model and the BPM gain and roll pa-

rameters. It is helpful to use small random values as initial

skew quadrupole variables if the initial lattice has no cou-

pling. This removes the ambiguity of the phases of the sec-

ondary modes due to zero coefficients a,b, c and d in Eq.( 5).

It is worth noting that correlation of the fitting parameters

can cause the fitting solution to have large excursion along

the under-constrained directions in the parameter space, in

much the same way as it does to LOCO [2]. Therefore the

constrained fitting technique should be used for our present

problem.

SIMULATION

We have done simulation with the SPEAR3 and NSLS-

II lattice models to verify the optics and coupling correc-

tion approach described in the previous section. For the

SPEAR3 case, quadrupole and skew quadrupole errors are

inserted into selected magnets in the lattice model. TBT

data are generated at the BPMs by tracking, with initial off-

sets of ∆x = 2.0 mm and ∆y = 1.0 mm. Gaussian noise of

σ = 0.02 mm is added to the tracking data for each BPM.

Random BPM gain and roll errors are generated and used

to artificially distort the data. The ICA method is applied

to separate the normal modes. Figure 1 shows the spatial

patterns and the FFT spectra of the ICA modes for half of

the decoupled normal modes.
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Figure 1: The spatial (left) patterns and FFT spectra (right)

of the ICA modes. Right plot also includes the PCA modes.

The spatial patterns are used to calculate the amplitude

and phase functions, which are then used in the least-square

fitting. The fitting parameters are 72 quadrupole variables,

13 skew quadrupole variables, and horizontal and vertical

gains and roll for each of the 57 BPMs. The normalized

χ2 dropped from 213.6 to 10.2 in two iterations. The fit-

ted lattice parameters agree very well with the target values

(Figure 2). The BPM gain and roll errors are also precisely

recovered. Both horizontal and vertical beta beats for the

initial lattice (relative to the target lattice with artificial er-

rors) are 11% rms. The fitted lattice has a beta beat of less

than 0.3%. The local vertical emittance of the fitted lattice

is nearly the same as the target.
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Figure 2: The fitted quadrupole (left) and skew quadrupole

(right) variables are compared to the target values for the

SPEAR3 simulation.

For simulation with the NSLS-II lattice, a 2% error is

added to one quadrupole, while random errors (with rms

error of 0.1%) are added to all other quadrupoles. Random

skew quadrupole errors and BPM errors are also inserted.

BPM noise of 0.02 mm rms is added to the tracking data

of all 180 BPMs. The fitting lattice parameters include 150

quadrupole parameters and 30 skew quadrupole parameters,

same as used for LOCO [11].

The BPM gain and roll errors are successfully recovered

(Figure 3). Because correlation between quadrupole pa-

rameters for the NSLS-II lattice is more severe, the fitted
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Figure 3: The fitted BPM gains and rolls for the NSLS2

simulation.

quadrupole parameters did not completely recover the er-

rors planted into the model (Figure 4 left). However, the

beta beat of the fitted lattice with respect to the target lattice

is much reduced from the initial lattice, which indicate the

optics of the fitted lattice is more or less equivalent to the

target lattice (Figure 5 left plot). The rms beta beats were

reduced from 5.3% horizontal and 5.2% vertical to 0.7%

horizontal and 0.6% vertical, respectively. The fitted skew

quadrupoles reproduced the expected errors accurately (Fig-

ure 4 right). The local vertical emittance of the fitted lattice

agrees with the target lattice very well, as is shown in Fig-

ure 5 right plot.
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Figure 4: The fitted quadrupole (left) and skew quadrupole

(right) variables are compared to the target values for a sim-

ulation with the NSLS-II lattice.
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Figure 5: Beta beat (relative to target lattice) of the initial

and fitted lattices (left) and comparison of vertical emit-

tances (right) between target and fitted lattices for the NSLS-

II simulation.

EXPERIMENT

We took experimental TBT BPM data for the NSLS-II

storage ring when the beam was excited on both transverse

planes. The oscillation amplitudes are on average roughly

0.2 mm horizontal and 0.3 mm vertical. The spatial vector

and FFT spectra (512 turns are used) of each of the two pairs

of ICA normal modes are shown in Figure 6. Because the

coupling was corrected before the measurement, the ampli-

tudes of the secondary modes were very small. The ampli-

tudes and phases derived from the spatial vectors are used

for fitting the lattice parameters and BPM parameters. Nor-

malized χ2 was reduced from 15.6 to 0.20 in four iterations.
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Figure 6: The spatial (left) patterns and FFT spectra (right)

of the ICA modes for experimental data from NSLS-II.

LOCO data were taken under the same condition dur-

ing the same experiment. The LOCO data were fitted for

two iterations with normalized χ2 reduced from 3865.0 to

6.4. The fitted BPM gains from the ICA and LOCO meth-

ods generally agree. The fitted quadrupole parameters and

skew quadrupole parameters are compared to the ICA re-

sults in Figure 7. There are clear similarity between the

fitting results of the two methods. The fitted quadrupole er-

rors from LOCO data are larger than ICA results for some

quadrupoles, especially for the QH1 family (parameter 61-

90). This could be caused by the degeneracy issue. The

beta beats of the fitted lattices for the two methods are very

much the same, which are shown in Figure 8. The fitted

lattices for both data sets have very small coupling.
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Figure 7: Comparison of fitted quadrupole (left) and skew

quadrupole (right) parameters for ICA and LOCO.
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Figure 8: Comparison of beta beats of the fitted lattices for

ICA and LOCO for NSLS-II measurements.

CONCLUSION

We propose a method to measure and correct linear optics

and coupling for storage rings using turn-by-turnBPM data.

The ICA method and least-square fitting are used to obtain

lattice and BPM parameters. We demonstrated this method

with both simulation and experimental data.
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