
SPIN RESONANCE STRENGTH CALCULATION

THROUGH SINGLE PARTICLE TRACKING FOR RHIC
∗

Y. Luo, Y. Dutheil, H. Huang, F. Meot, V. Ranjbar

Brookhaven National Laboratory, Upton, NY, USA

Abstract

The strengths of spin resonances for the polarized-proton

operation in the Relativistic Heavy Ion Collider are cur-

rently calculated with the code DEPOL, which numerically

integrates through the ring based on an analytical approx-

imate formula. In this article, we test a new way to cal-

culate the spin resonance strengths by performing Fouier

transformation to the actual transverse magnetic fields seen

by a single particle traveling through the ring. Comparison

of calculated spin resonance strengths is made between this

method and DEPOL.

INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory is the only high energy

collider in the world to collide polarized protons with the

particle energy up to 255 GeV. Polarization is the average

value of the projection of the spins of particles in a bunch

on the average spin direction. To maintain a high polariza-

tion during the beam transfer from the injectors to RHIC

and on the acceleration and at store of RHIC, we need to

have a good knowledge of all the spin resonance strengths

on the way.

The strengths of spin resonances are normally numeri-

cally calculated based on analytical approximate formula.

For an example, DEPOL [1] numerically integrates through

the ring based on known magnetic fields and linear Twiss

parameters. However, DEPOL itself does not calculate the

linear optics. The linear optics parameters have been im-

ported from other codes such as MADX. To improve the

accuracy of resonance strength calculation, sometime we

may need to split each magnet into several slices.

SimTrack [2] is a compact c++ library for beam optics

calculation and particle tracking based on symplectic inte-

gration. It has been extensively used for dynamic aperture

calculation with beam-beam interaction in RHIC. Recently

we implemented proton spin tracking into this code [3].

Since SimTrack tracks particles in steps through each mag-

net, the particle coordinates and the magnetic fields the par-

ticles feel are all transparent to the users. Therefore it is

possible to calculate the spin resonance strength through

particle tracking.

∗This work was supported by Brookhaven Science Associates, LLC

under Contract No. DE-AC02-98CH10886 with the U.S. Department of

Energy.

SPIN RESONANCES

Thomas-BMT equation describes the particle’s spin mo-

tion in the presence of magnetic and electric fields,

dS

dt
= S×Ω, (1)

Ω =
e

γm

[
(1 +Gγ)B⊥ + (1 +G)B||

]
. (2)

S is the 3-dimensional spin vector in the particle’s frame.

B⊥ and B|| are the magnetic fields perpendicular and par-

allel to the particle velocity. It is convenient to use the path

length s of the reference particle as the independent vari-

able, then Eq. (1) turns to

dS

ds
= S× F, (3)

F =

√
(1 + x

ρ
)2 + x′2 + y′2

1 + δ

Ω

(Bρ)0
, (4)

where (Bρ)0 is the magnetic rigidity for the reference par-

ticle, ρ is the curvature for the reference particle on which

the local coordinate system is built.

To study the polarization loss for a single particle when

it crosses a single spin resonance, we would like to use the

spinor equations where the bending angle θ is used as the

independent variable. Then Eq. (3) is re-written as

dS

dθ
= n× S, (5)

where n = −Gγŷ−Fxx̂−Fsŝ, Gγ is the spin tune for the

reference particle. Defining ξ = Fx − iFs and expanding

it in Fourier series, we have

ξ =
∑
K

εKe−iKθ. (6)

Here εK is the strength of spin resonance. There are two

important types of spin resonances: imperfection and in-

trinsic resonances. For imperfection resonances, Gγ = K ,

K is an integer. For intrinsic resonances, Gγ = K ± μy,

μy is the fractional vertical tune.

According to Eq. (4) and Eq. (6), we have [4]

εk=
1

2π

∮ [
(1 +Gγ)

Bx

(Bρ)0)
− i(1 +G)

B||

(Bρ)0

]
eiKθds.

(7)

where Bx and B|| are the projections of the magnetic fields

seen by the particle. In Ref. [1, 4], εk can be presented with

particle’s coordinates as εk =

− 1

2π

∮ [
1 +Gγ)(ρy′′ + iy′)− iρ(1 +G)(

y

ρ
)′
]
eiKθdθ.

(8)
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Figure 1: An example of (1 + Gγ) Bx

(Bρ)0
seen by a test

particle with Gγ = 62.33.

Eq. (8) is used for spin resonance strength calculation in

DEPOL. In this article, we will directly use Eq. (7) to cal-

culate it since the magnetic fields seen by the test particle

are transparent during particle tracking.

SPIN RESONANCE STRENGHTH

CALCULATION

In this section we present the procedure to calculate the

spin resonance strength through a single particle tracking.

The lattice for the 2015 RHIC 100 GeV polarized proton

run is used. The lattice tunes are set to (29.68, 30.67) .

We will track one particle one turn and record the magnetic

fields it feels in each magnet. For convention, the spin res-

onance strength always refers to that with the normalized

beam transverse emittance 10 π mm.mrad. However, for

the particle tracking, we would like to scale down the emit-

tance to avoid large polarization loss during particle track-

ing. In the following , we use 10−4 π mm.mrad for the

initial emittance. The test particle is on momentum and

only has non-zero initial vertical coordinates.

SimTrack is used to track the test particle element-by-

element through the ring. At each integration step of each

magnet, we calculate the direction of particle velocity and

project the magnetic fields onto it. The projections of

these fields onto the local reference coordinate frame are

recorded at each integration step.

As an example, Fig. 1 shows (1 + Gγ) Bx

(Bρ)0
seen by

the particle along the ring. The horizontal axis is the ac-

cumulated bending angle θ. In this example, we track a

particle with Gγ = 62.33. Gγ = 62.33 is the strongest

spin resonance on the RHIC energy ramp.

Looking into ξ at each magnets, we found that its main

contribution is from quadrupoles. The contributions from

bending magnets is three orders of magnitude smaller than

that in quadrupoles. The contribution from sextupole mag-

nets is even smaller. And the term (1 + G)
B||

(Bρ)0
is much

smaller than (1 +Gγ) Bx

(Bρ)0
since the most magnetic fields
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Figure 2: Calculated spin resonance strength versus the ini-

tial betatron motion phase.
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Figure 3: Calculated spin resonance strength versus the ini-

tial betatron motion emittance.

are in the transverse plane.

Knowing (1 +Gγ) Bx

(Bρ)0
and (1 +G)

B||

(Bρ)0
, we can cal-

culate the resonance strength with Eq. (7). The final spin

resonance is scaled up by a factor of
√
105. By doing in

this way, the calculated spin resonance strenth through par-

ticle tracking is 0.1957. The value from DEPOL is 0.1917.

The difference between them is less than 2%.

In the above calculation, we set the initial vertical beta-

tron phase to be zero. Figure 2 shows the calculated spin

resonance versus the initial betatron phase. Here we sam-

ple 50 initial betatron phases with the same distance step

between 0 to 2π. From Fig.2, the difference in the calcu-

lated spin resonance strengths with different initial betatron

phases is less than 3%

Figure 3 shows the calculated spin resonance strength

versus initial betatron motion emittance. The resonance

strength scales with the betatron motion amplitude or the

square root of emittance. We used different initial emit-

tances between 2 × 10−3 π mm.mrad and 2 × 10−5 π
mm.mrad. From Fig. 3, the variation in the calculated
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Figure 4: Comparison of |εK | between the new method and

DEPOL.

spin resonance through tracking is less than 0.5%.

For a single proton spin resonance crossing, the final ver-

tical spin projection is given by Froissart-Stora Formula,

Sy = 2e−
π|εK |2

2α − 1, (9)

where α = dGγ/dθ is the resonance crossing speed. With

the initial and final spin vectors from particle tracking, we

derive the spin resonance at Gγ= 62.33 about 0.192, which

is very close to the values calculated with the new method

and DEPOL.

ON THE RHIC RAMP

In this section we calculate the strengths of all intrinsic

spin resonances on the RHIC energy ramp. For simplicity,

in this simulation study, the lattice designed for γ = 35
is used for the whole ramp. There are changes in the ac-

tual lattices at different energies on the RHIC energy ramp.

However, we found that the difference in the calculated res-

onance strengths is small between these two cases: using

the same lattice for whole ramp and using different lattices

at different energies.

The injection and store energies for the 2015 RHIC po-

larized proton run are γ = 25 and γ = 106 respec-

tively. Considering both the sum and difference intrinsic

spin resonances, there are totally about 200 resonances on

the RHIC energy ramp. The distance between the adjacent

spin resonances is about 500 MeV. The sum resonance hap-

pens when Gγ = P − μy and the difference resonance

happens when Gγ = P + μy .

Figure 4 shows the spin resonance strengths on the RHIC

energy ramp. The horizontal axis is Gγ. The red lines

are the spin resonance strengths calculated with DEPOL.

The blue dots are the spin resonance strengths calculated

through particle tracking. The strongest spin resonance

happens at Gγ = 62.33. Its strength is about 0.2.

From Fig. 4, at all strong spin resonances on the en-

ergy ramp of RHIC, the resonance strengths calculated
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Figure 5: Comparison of |εK | between the new method and

DEPOL around the area Gγ = 62.33.

through particle tracking agree very well with the analyt-

ical calculations with DEPOL. However, we notice that the

particle tracking method gives a relative large resonance

strength for resonances on both sides of a strong resonance.

For an example, for the area close to the strong resonance

Gγ = 62.33, Figure 5 shows that the resonance strengths

calculated at Gγ = 61.67 and Gγ = 62.67 are much larger

than that from DEPOL. These two spin resonances are ad-

jacent to the strong spin resonance at Gγ = 62.33.

One possible explanation is that the particle in the track-

ing method may sample the adjacent strong spin resonance.

As we know, the stronger the resonance is, the wider its

stop-band is. For an example, particles with Gγ = 61.67
or 72.67 in tracking may sample the adjacent strong res-

onance at Gγ = 62.33. However, further detailed studies

are needed. Similar attempt was done for AGS with Fresnel

integrals approximation for weak spin resonances [5].

SUMMARY

In the article, we tested a new way to calculate the spin

resonance strength through a single particle tracking with

the magnetic fields the particle feels. At strong spin res-

onances, the resonance strengths from this method agree

well with that from analytical calculation with DEPOL.

However, this method gives a relatively larger resonance

strengths for the adjacent resonances to a strong one. The

reason is under study.
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