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Abstract

This work presents a fully kinetic description to model

the electron flow in the electronic crossed-field configura-

tion observed in a smooth-bore magnetron. Through this

model, it has been observed that, according to the electro-

magnetic field, the injection temperature and the charge den-

sity, the electron flow can be classified in two different sta-

tionary modes: magnetic insulation mode where most of the

electrons returning to the cathode after a transient time and

Child-Langmuir mode where most of the electrons reach

the anode after a transient time. Focusing on magnetic insu-

lated mode, it has been found that charge density and injec-

tion temperature define whether electrons are accelerated

(accelerating regime) or decelerated (space-charge limited

regime) on the cathode. Besides, when the injection temper-

ature is relatively low (high), a small charge increase causes

(does not cause) an abrupt transition between accelerating

and space-charge limited regime. Basing on the results, it

was possible to identify a critical temperature that separates

abrupt and continuous behavior. The results have been ver-

ified by using self-consistent computer simulations.

INTRODUCTION

Describing the electron flow in presence of crossed elec-

tric and magnetic fields is fundamental for the development

of several advanced applications in areas ranging from mi-

crowave sources [1] to space propulsion [2]. The study of

the electron dynamics in such field configuration was pio-

neered by Hull [3] who showed that a magnetic field might

limit the particle flow from the cathode to the anode. This

result was based on a single-particle model that assumes

given external electromagnetic fields. Nowadays, a large

number of papers have investigated the equilibrium and sta-

bility of these systems by explicitly taking into account the

particles self-fields [4–6]. The self-fields may play a major

role in the dynamics since they can also limit the particles

flow from the cathode to the anode as the current density ex-

ceeds a certain threshold and a space-charge limited (SCL)

regime emerges [7, 8]. However, given the complexity that

long ranged self-fields add to the problem, the large major-

ity of the theoretical analysis done so far are based on mod-

els that assume the electron flow is either completely cold or

is a fluid with postulated equation of state. These fluid mod-

els might not properly take into account thermal effects. Be-

cause of it, recently we have developed a fully kinetic model

to investigate thermal effects in crossed-field configuration

observed in a smooth-bore magnetron [9]. Here, we review
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the theoretical framework and compare it against simula-

tions with different injection distributions at the cathode.

THE PHYSICAL MODEL

The model and field configuration of a smooth-bore mag-

netron is shown in Fig. 1. There are two plates separated by

a distance L along the y axis. The one localized at y = 0 is a

thermionic cathode kept at zero electrical potential and the

one localized at y = L is an anode kept atV0 electrical poten-

tial. As consequence of the electrical potential difference in

the gap region between the plates, there is an uniform elec-

tric field E0 = −(V0/L)ŷ. Besides, in gap region there is an

uniform constant magnetic field B0 = −B0ẑ, consolidating

the crossed-field configuration.

Figure 1: Model and field configuration of a smooth-bore

magnetron. The curves correspond to the trajectories of test

electrons emitted from the thermal cathode with vanishing

velocities. In the case (a) V0 > VH and in the case (b) V0 <

VH .

At instant of time t = 0, the thermionic cathode starts to

emit electrons, which enter in gap region. These are acceler-

ated by the electric field E0 along the y direction while they

are deflected along clockwise direction on x−y plane by the

magnetic field B0. In Fig. 1 is also shown two trajectories of

test electron under external fields influence. Assuming the

test electron enters the gap region with vanishing velocities,

it is observed that, whether electrical potential satisfies the

conditionV0 > VH– whereVH = eB2
0
L2/2m is called poten-

tial Hull andm and e are the mass and electric charge of the

electron– the test electron has enough energy to reach the

anode, as illustrated in detail (a) of the Fig. 1. On the other

hand, whether V0 < VH the test electron has not enough en-

ergy to reach the anode and the magnetic field deflects the

test electron to cathode, as illustrated in detail (b) of the Fig.

1. In the smooth-bore magnetron system, there is a spatial

symmetry and it is assumed the thermal cathode emits infi-

nite charges sheets parallel to x − z plane instead of single

particles. Consequently, the particle distribution function

on phase space f (r,p, t) only depends on the y spatial coor-

dinate and its evolution is dictated by Vlasov equation [10]

df
dt
=

∂ f
∂t
+

∂H
∂py
∂ f
∂y
−
∂H
∂y

∂ f
∂py
= 0, (1)

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWA002

MOPWA002
74

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



where H = (p + eA)2/2m − eφ(y) is the single parti-

cle Hamiltonian and A and φ are the vector and scalar

electromagnetic potentials. The scalar potential is self-

consistently determined from the particle distribution by the

Poisson equation

∂2φ

∂y2
=

e
ε0
n(y), (2)

with the boundary conditions: φ(0) = 0 and φ(L) = V0.

In equation (2), n(y) is the electron density and ε0 is the

vacuum permittivity. Assuming the external magnetic field

is stronger than the self-consistent magnetic field– it is true

when the gap region is sufficiently thin [6]– it is possible to

use A = A0, where A0 = −B0yx̂. After defining the vector

and scalar potential, the single particle Hamiltonian can be

written as:

H =
1

2m
[
(px + eB0y)2 + p2

y + p
2
z

]
− eφ(y). (3)

The Hamiltonian (3) does not depend on x and z, thus

px and pz are constant of motion and their values are deter-

mined by initial conditions. For simplicity, it is supposed

the electrons are injected in gap region only with orthogo-

nal velocities to the cathode, such that px = pz = 0. It does

not imply the velocity parallel to cathode is always zero, in

fact v = (p + eA)/m and consequently vx = eB0y/m.

After a transient time, it is expected the electron flow

reach a stationary state. In that situation, the electric field

value on cathode Ec = −∂φ/∂y |y=0 define whether the flow

will be accelerated (accelerating regime– Ec/E0 > 0) or de-

celerated (space-charge limited regime– Ec/E0 < 0) when

it enters in gap region.

In order to construct the theoretical model, it is consid-

ered the electrons are injected from cathode according to a

waterbag velocity distribution

f (y=0,py ) =
n0

p0max − p0min

, (4)

for p0min ≤ py ≤ p0max and zero elsewhere. In equation

(4), n0 is the electron density at the cathode and p0max and

p0min are initial momentum of the most and the least ener-

getic particle. Once the stationary state has been achieved,

all quantities become time independent, even the single par-

ticle Hamiltonian (3) and it is possible to write the momen-

tum for an electron as: py (p0, y) = ±[p2
0
+ 2emφ(y) −

e2B2
0
y

2]1/2 where p0 is its momentum at the cathode and the

plus (minus) signal refers to an electron that is moving to-

ward the anode (cathode). In the theoretical model, Vlasov

equation imposes the electron flow is incompressible in the

phase space; it implies the distribution everywhere inside

this region has the same density. Focusing on magnetic in-

sulated cases– where V0 < VH − p2
0max
/2m and all the par-

ticles ejected from the cathode eventually return to it– it is

possible to write the particle density as:

n(y) = 2n0

|py (p0max , y) | − |py (p0min , y) |
p0max − p0min

, (5)

where the factor “2” accounts for the fact that there is an

equal number of particles moving to and from the cathode

and py (p0max , y) and py (p0min , y) are real functions to be

considered zero whenever they become imaginary. Using

the density given by (5) in electric potential equation given

by (2), it is possible to obtain the stationary states of the

electron flow and consequently the value to the electric field

over the cathode.

RESULTS

In this section, it will be shown the results. In order

to simplify, it is convenient define dimensionless param-

eter: ν0 = V0/VH , η0 = en0L2/ε0V0, p0 = (p0max +

p0min )/2eB0L and T0 = (p0max − p0min )2/12e2B2
0
L2

which measure, respectively, the accelerating potential, the

electron density, the average momentum and the tempera-

ture (momentum spread) at injection.

In Fig. 2(a), it is plotted Ec/E0 as function of electron

density for ν0 = 0.8, p̄0 = 0.2 and T0 = 8.3 × 10−4

(low temperature). Through theoretical model (solid line)

is observed whether charge density is small (η0 → 0) the

electrical potential solution approaches the vacuum solu-

tion φ(y) = V0y/L and consequently Ec ≈ E0 ≈ −1.

As η0 increases, Ec/E0 decrease because more charge is

present in gap region, depleting the accelerating electric

field. When η0 ≈ 0.82 the self-field produced at cath-

ode by the charge density is stronger then the external field

and a space-charge solution is found. Moreover, whether

η0 < 0.82 or η0 > 0.836 there is only one possible solution,

but whether 0.82 < η0 < 0.836 there are three different

solutions predicted by the theoretical model.

To verify the theoretical model, it has been executed a

N-particle self-consistent simulation. The dynamic of the

ith charge sheet is derived from the Hamiltonian and is:

ÿi = −Ω
2
c yi − e(E0 + E i

s )/m, where Ωc = eB0/m is

the cyclotron frequency and E i
s is the self-consistent elec-

tric field acting over the ith charge sheet. To model the

charging process, it has been initialized the simulation with

the gap region empty and it has been computed the elec-

tric field at the cathode Ec as the charge builds up in the

system. After some transient time, Ec saturates and the

system reaches a stationary state. Results of Ec obtained

from N-particle simulations are shown by the symbols in

Fig. 2 for two different initial velocity distribution: wa-

terbag (points) and Gaussian (squares). It is observed a

good agreement between the theory (solid line) and simu-

lation (symbols). Moreover, it is possible to see the charge

arrange to accelerate regime (it does not depend on the ini-

tial condition) and there is an abrupt transition from ac-

celerating (Ec/E0 = 0.2) to space-charge limited regime

(Ec/E0 = −0.05) when η0 = 0.835→ 0.845.

The phase space before and after the abrupt regime tran-

sition observed in Fig. 2(a) is shown in Fig. 3(a) and Fig.

3(b), respectively. In Fig. 3, solid lines represent theoreti-

cal solution for the most and the least energetic charge sheet

and dots represent charge sheets in gap region when it is
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Figure 2: Normalized electric field at cathode as function

of the electron density for (a) T0 = 8.3 × 10−4 and (b)

T0 = 3.3 × 10−3. The solid line corresponds to results

from the theory whereas the symbols from the simulation

with waterbag (points) and Gaussian (squares) initial ve-

locity distributions. Others parameters are: ν0 = 0.8 and

p̄0 = 0.2.

used Gaussian initial velocity distribution. It is possible to

conclude even using a different initial velocity distribution

from theoretical model, the simulation electric field at cath-

ode are almost the same.

Figure 3: Phase space plots before (a) and after (b) the

abrupt transition shown in Fig. 2 (a). These figures show

a dramatic change in charge distribution as the system pass

from accelerating to decelerating regime. In these figures,

the parameters are: T0 = 8.3×10−4, ν0 = 0.8, p̄0 = 0.2 and

(a) η0 = 0.835 and (b) η0 = 0.845.

In Fig. 2(b), it is plotted E0/E0 as function of electron

density for ν0 = 0.8, p̄0 = 0.2 and T0 = 3.3 × 10−3 (high

temperature). Through theoretical model (solid line) is ob-

served whether charge density is small (η0 → 0) the elec-

trical potential solution approaches the vacuum solution

φ(y) = V0y/L and consequently Ec ≈ E0 ≈ −1. As η0 in-

creases, Ec/E0 decrease because more charge is present in

gap region, depleting the accelerating electric field. When

η0 ≈ 0.9 the self-field produced at cathode by the charge

density is stronger then the external field and a space-charge

solution is found. In this case, there is only one solution of

Ec/E0 for each charge density value. It means, when injec-

tion temperature is relatively high there is not abrupt tran-

sition between accelerate and decelerate regimes. In Fig.

2(b), the results were confirmed by simulation (symbols) for

both Gaussian and waterbag initial velocity distribution.

These results indicate there is a critical temperature that

separates the occurrence of abrupt and continuous regime

transitions. In fact, the critical temperature is: T0c ≈ 1.4 ×

10−3.

CONCLUSION

In this work, it was shown and analyzed some of electron

flow properties in a crossed electromagnetic field configu-

ration observed in smooth-bore magnetrons. Basing on the

waterbag theoretical model, it was found that depending on

the parameters of the system it may present either a single

or multiple stationary solutions. However, through simu-

lations using two different initial velocity conditions– wa-

terbag and Gaussian– it was observed charge sheets arrange

to accelerate regime and there is an abrupt transition from

accelerating to decelerating regime when injection temper-

ature is low. It was not occurred when the injection temper-

ature was hight. Basing on these results, it was evaluated

a critical temperature which separates abrupt from continu-

ous transition behavior.
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