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Abstract 

A new adaptive Particle-in-Cloud (AP-Cloud) method 
for obtaining optimal numerical solutions to the 
Vlasov-Poisson equation has been proposed. The 
traditional particle-in-cell (PIC) method, commonly used 
for solving this problem, is not optimal in terms of the 
balance of errors of the differential operator discretization 
and source integration; it is also inaccurate when the 
particle distribution is highly non-uniform. Our method 
replaces the Cartesian grid in the traditional PIC with 
adaptive computational nodes or particles, to which the 
charges from the physical macroparticles are assigned by 
a weighted least-square approximations. The partial 
differential equation is then discretized using a 
generalized finite difference (GFD) method and solved 
with fast linear solvers. The density of computational 
particles is chosen adaptively, so that the error from GFD 
and that from the source integration are balanced and the 
total error is approximately minimized. The method is 
independent of geometrical shape of computational 
domains and free of artificial parameters. Results of 
verification tests using electrostatic problems of particle 
beams with halo and comparison of accuracy and solution 
time of the AP-Cloud method with the traditional PIC are 
presented. 
 

ERROR ANALYSIS OF TRADITIONAL 
PIC METHOD 

 
Particle-in-cell [1] (PIC) is the traditional method for 

solving both the Vlasov-Poisson and Vlasov-Maxwell 
problems. In this work, we focus on the Vlasov-Poisson 
equation using an example of the electrostatic space 
charge problem for particle beams.  

In PIC, the charge density at grid point ρ(xj) is 
estimated from the distribution of particles by 
interpolating particle charges to mesh nodes. Then the 
Poisson equation 

Δϕ = ρ                  (1) 
subject to a Dirichlet or Neumann boundary condition is 
discretized on the mesh. Performing error analysis of the 
PIC method, we can show that the total error is 
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where N is the number of physical macroparticles, h is the 
cell size, and D is the space dimension. The error is 
minimized if 
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which is impossible if a uniform mesh is used for a highly 
nonuniform particle distribution. 
 

AP-CLOUD METHOD 
 

Adaptive Particle-in-Cloud (AP-Cloud) method can be 
viewed as a meshless and adaptive version of PIC. We 
use computational particles instead of Cartesian grid, the 
distribution of which is derived using an error balance 
criterion. Instead of the finite difference discretization of 
the Laplace operator, we use the framework of weighted 
least squares approximation, also known as the 
generalized finite-difference (GFD) [2]. The framework 
includes interpolation, least squares approximation, and 
numerical differentiation on a stencil in the form of cloud 
of computational particles in a neighborhood of the point 
of interest. It is used for the charge assignment scheme, 
numerical differentiation, and interpolation of solutions.  
  The Particle-in-Cloud method operates as follows: 

• Given a distribution of physical macro-particles, 
optimally select a subset of computational nodes 
(particles) from this distribution by constructing 
an octree and applying the error balance criterion 
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where h is the local averaged distance between 
computational macro-particles and k is the order 
of interpolation polynomial in the GFD method. 

• Place computational particles on the boundary  
• Enforce the 2:1 balance of inter-particle 

distances in the case of extreme density changes. 
The 2:1 balance requires that the difference 
between the levels of refinement of two 
neighbors is at most one, improving the 
smoothness in the placement of computational 
particles.  

• Assign physical states to computational nodes 
and approximate differential operators in the 
location of computational nodes using GFD. 

• Solve the corresponding linear system using a 
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fast parallel solver. 
• Calculate the solution gradient on computational 

particles using the same GFD stencils. 
• Interpolate gradients back to the location of 

macroparticles using Taylor expansion. 
 

Another important feature and advantage of the Particle- 
in-Cloud method is its ability to solve problems in 
irregular and geometrically complex domains. 

NUMERICAL VERIFICATION TESTS 
We have performed verification of the 

Particle-in-Cloud method using problems with highly 
non-uniform distributions of particles typical for 
accelerator beams with halos. We study a high-intensity, 
small-sigma particle beam is surrounded by a larger 
radius halo containing from 3 to 6 orders of magnitude 
smaller number of particles (see Figure 1). 

2D Particle Beam with Halo 
Consider the Poisson equation (1) in a unit square and 

assume that the particle density is given by the following 
function 
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where σ1=0.002, σ2=0.3, a2=10-5, and a1=396.1 is the 

normalization parameters to ensure ρ(x)dx
Ω

∫ =1 . To 

obtain a benchmark solution, we embed the unit square in 
a larger disk with zero Dirichlet boundary condition, and 
solve the corresponding Poisson problem very accurately 
in 1D using the radial coordinate. The boundary 
conditions for the 2D problems are obtained by using the 
1D solution with proper radial coordinates corresponding 
to the unit square. In the 2D domain, physical 
macroparticles are randomly generated with the density 
(2), and the problem is solved using the traditional PIC 
and the AP-Cloud method. This procedure was designed 
to enable calculations with the traditional PIC on a square 
mesh; the AP-Cloud method is independent of the 
geometry.   

 Figure 1 shows the distribution of physical 
macroparticles, colored according to numerical solution 
values for the potential and Figure 2 shows the placement 
of computational particles. Comparison of errors of the 
traditional PIC and the AP-Cloud is presented in Figure 3. 
For similar computational time, the Particle-in-Cloud 
method achieves smaller errors of the solution gradient by 
the factor of 30 – 50 compared to PIC. 

Comparable results were obtained for the extension of 
problem (1) – (2) to 3D. The computational test used 106 

macroparticles. Figure 4 shows the distribution of 4067 
computational particles, selected by the particle 
placement algorithm.  

 
Figure 1: Typical distribution macroparticles in transverse 
cross section of accelerator beam with halo. Color 
represents numerical solution values for the potential. 

 

 
Figure 2: Typical particle distribution of computational 
particles in the beam halo problem.  
 

 
 
Figure 3: Errors of PIC and AP-Cloud method as a 
function of number of grid points or computational 
particles (nodes). 
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Figure 4: Distribution of 4067 computational particles 
with values of electric field error.  

Self-force Effect with Single Particle 
Vlasov-Poisson problems with highly non-uniform 

distributions of matter can be solved using the adaptive 
mesh refinement technique in PIC [3.4]. It is however 
well known that AMR-PIC introduces significant artifacts 
in the form of artificial image particles across boundaries 
between coarse and fine meshes. These images introduce 
spurious forces that may potentially alter the particle 
motion to an unacceptable level [3]. Methods for the 
mitigation of the spurious forces have been designed [4]. 
The traditional PIC on a uniform mesh is free of such 
artifacts. 

While the convergence of Adaptive Particle-in-Cloud 
solutions to benchmark (highly resolved 1D) solutions 
already indicates the absence of artifacts, we have 
performed additional tests similar to the one in [3], 
specially designed to investigate the presence of artificial 
images. In the AMR-PIC case, the problems involves the 
motion of a single particle across the coarse – fine mesh 
interface. For the Particle-in-Cloud method, we studied 
the motion of a single test particle represented by a 
moving cloud of computational particles with refined 
distances towards the test particle. The test particle 
contained a smooth, sharp, Gaussian-type charge 
distribution to satisfy requirements of the GFD method. 

 

  
Figure 5: Motion of a single test particle obtained with 
PIC and AP-Cloud methods demonstrating the absence of 
artifacts in the AP-Cloud method. 

 
The motion of a single test particle obtained with PIC 

and Particle-in-Cloud methods is shown in Figure 5. The 
test provides an additional assurance that artificial images 
are not present in the AP-Cloud method. 

CONCLUSIONS AND FUTURE WORK 
We have developed an Adaptive Particle-in-Cloud 

(AP-Cloud) method that replaces the Cartesian grid in the 
traditional PIC with adaptive computational nodes. 
Adaptive particle placement balances the errors of the 
differential operator discretization and the source 
computation (equivalent to the error of the Monte Carlo 
integration) to minimize the total error.  

AP-Cloud uses GFD based on weighted least squares 
(WLS) approximations on a stencil of irregularly placed 
nodes. The framework includes interpolation, least 
squares approximation, and numerical differentiation 
capable of high order convergence.  

The Particle-in- Cloud method has significant 
advantages over the traditional PIC for non-uniform 
distributions of particles and complex boundaries. It 
achieves 30 - 50 times better accuracy in the gradient of 
the potential compared to the traditional PIC for the 
problem of particle beam with halo. The method is 
independent of the geometric shape of the computational 
domain, and can achieve highly accurate solutions in 
geometrically complex domains. Specially designed tests 
showed that the AP-Cloud method is free of artificial 
images and spurious forces typical for the first versions of 
AMR-PIC (without special mitigation techniques).  

Future work will focus on higher convergence rates of 
the method, timing optimization, and scalability. Future 
application will also include cosmological simulations of 
dark matter that are characterized by the formation of 
halos. 
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