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Abstract
One of the major problems when doing the commission-

ing of an accelerator is to identify and correct the linear
components of magnetic errors. The Action and Phase Jump
Technique is one of the available methods to perform this
task. For this method to work, it is necessary to have one
BPM measurement at the Interaction Region (IR), the re-
gion where the magnetic error is evaluated. In some cases,
this BPM measurement become the biggest source of un-
certainty when the action and phase jump technique is used.
In this paper, a new formulation based on this method is
presented. This new formulation doesn’t make any use of
BPM measurements at the IR, thereby allowing more robust
error estimations. Quadrupole errors in the LHC lattice are
estimated with this new formulation, using both, simulated
data and LHC experimental data. A comparison with the
previous formulation is included. The results on simulated
data show that the reformulation leads to a reduction in the
uncertainty, while for the experimental case, the reduction
is not so clear. Explanations for this behavior and possible
remedies will also be discussed.

INTRODUCTION
One of the main goals during commissioning of accelera-

tors like LHC is to reduce the magnetic errors. The Action
and Phase Jump Analysis Technique, also called Action and
Phase method, or just APJ, is one of the available methods
to perform magnetic error corrections. This method is based
on the theoretical principle of preservation of the Action
and Phase variables in absence of a magnetic error. The
corrections are made locally and specially at the Interaction
Regions (IR) of an accelerator. Its theoretical development
is presented in the first part of [1].

Experimental studies using this method have been already
presented. Different tests were run at RHIC in Brookhaven,
for example using closed-orbit [2] or first turn orbit [3] data.
In LHC, preliminary analysis had been done using turn-by-
turn (TBT) orbits, these are [4] and [5].
In this paper, a reformulation of the APJ technique for

linear error corrections will be presented. First, theoretical
expressions will be shown and then a comparison between
the previous and the new formulation, using simulated orbits,
will be discussed. Finally, the results of proposed corrections
using LHC data are reported.
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THEORETICAL REFORMULATION FOR
THE ACTION AND PHASE ANALYSIS
With the APJ method, the variables of Action (J) and

Phase (δ) are measured from orbit data around the accelera-
tor and then three regions are identified: the region which
contains the magnetic error, a region (or subsection of the
accelerator) before the error, and a region after the error. To
calculate the magnetic errors the method uses the J and δ
from the region before and after the error, and one transverse
position from the error region.

The transverse position at the error region is inferred from
one BPMmeasurement at the IR as described in [6]. In some
cases, this BPMmeasurement can become the biggest source
of uncertainty when the action and phase jump technique
is used, because it is a single measurement while the other
quantities involved to estimate the magnetic error are ob-
tained from multiple measurements.
Keeping the theoretical framework of the Action and

Phase method, given in [1], new equations are introduced
that mainly start by changing equation (15) from that paper
(the strength of the magnetic error), and ends in new equa-
tions for the magnetic errors estimations, which changes
equations (22), (25) and (26).

The reformulation implies the following procedure. Equa-
tion (15) in [1] is√

2J0 + 2J1 − 4
√

J0J1 cos (δ1 − δ0)/
√
βz, i (sθ ) = θz (1)

where Jn , δn are the average of the Action and Phase vari-
ables, for the region before n = 0 and after n = 1 the error,
θz is the strength of the magnetic error, and βz, i (sθ ) is the
beta-function at the longitudinal position of the error. In
addition, in terms of the multipolar components of the mag-
netic field, the strength of the magnetic error is written as
equations (19) and (29) from [1], these are:

θx = B0 − B1x(sε ) + A1y(sε ) + 2A2x(sε )y(sε ) +

+B2[−x2(sε ) + y2(sε )] + ...
θy = A0 − A1x(sε ) + B1y(sε ) + 2B2x(sε )y(sε ) +

+A2[x2(sε ) − y2(sε )] + .... (2)

where Bi and Ai are quantities related with the multipolar
expansion of the magnetic field, and x(sε ), y(sε ) are the
transverse coordinates of the orbit at the error position.

When several errors are present, equation (1) can be rewrit-
ten as:√
2J0 + 2J1 − 4

√
J0J1 cos (δ1 − δ0) =

∑
i

[θz, i
√
βz, i (sθ )]

(3)
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where the strength of the error is now taken as the sum
of the individual magnetic error contribution weighted
by its corresponding beta-function. In this case, the
strength of the magnetic error is given by equations (2)
but applied to every magnetic corrector i. Using the ex-
pression for the position at the error region, given by
z(s j ) =

√
2Jz,0 βz (s j ) sin (ψ(s j ) − δ0) and defining m j,z =√

2Jz,0 sin (ψz (s j ) − δz,0) so z(s j ) = m j,z

√
βz, j , the mag-

netic strength errors transforms to:

θx, i = B0 − B1msεi ,x

√
βx,sεi + A1msεi ,y

√
βy,sεi +

+ 2A2msεi ,x

√
βx,sεi msεi ,y

√
βy,sεi + ...

θy, i = A0 − A1msεi ,x

√
βx,sεi + B1msεi ,y

√
βy,sεi +

+ 2B2msεi ,x

√
βx,sεi msεi ,y

√
βy,sεi + .... (4)

Therefore, from equation (3) :√
2Jx,0 + 2Jx,1 − 4

√
Jx,0 Jx,1 cos (δx,1 − δx,0) =∑

i

[
B0
√
βx,sεi

− B1msεi ,x
βx,sεi

+ A1msεi ,y

√
βy,sεi

βx,sεi
+

+ 2A2msεi ,x
βx,sεi

msεi ,y

√
βy,sεi

+ ...
]

√
2Jy,0 + 2Jy,1 − 4

√
Jy,0 Jy,1 cos (δy,1 − δy,0) =∑

i

[
A0
√
βy,sεi

− A1msεi ,x

√
βy,sεi

βx,sεi
+ B1msεi ,y

βy,sεi
+

+ 2B2msεi ,x

√
βx,sεi

msεi ,y
βy,sεi

+ ....
]

(5)

This equation doesn’t include the measurement at the IR
BPM as was sought. The left-hand-side depends totally in
measured (experimental) quantities whose determination
involve multiple measurements, while the right-hand-side
depends on quantities taken from the model of the accelera-
tor, with the exception of the unknowns quantities and δ0
which is also obtained from multiple measurements.

Previous studies show that all linear errors at one IR
with low β∗ can be compensated by tweaking two normal
quadrupoles and one skew quadrupole corrector ( see [4]
and [7]).

The reformulated equations for those two normal
quadrupole (B1, I ,B1, I I ) and the skew quadrupole correc-
tor (A1) are:

√
2Jx,0 + 2Jx,1 − 4

√
Jx,0Jx,1 cos (δx,1 − δx,0) =

β̂A1mA1,yA1 − β̂x,B1, I mB1 I,xB1, I − β̂x,B1, I mB1 I I,xB1, I I√
2Jy,0 + 2Jy,1 − 4

√
Jy,0Jy,1 cos (δy,1 − δy,0) =

β̂A1mA1,xA1 + β̂y,B1, I mB1 I,yB1, I + β̂y,B1, I mB1 I I,yB1, I I

where β̂z, t =
∫
βzds for t = B1, I ,B1, I I and β̂A1 =∫

βx βyds.
To obtain the magnetic errors there are more unknowns

(B1, I ,B1, I I ,A1) than equations, therefore two orbits are re-
quired, and they are chosen from the 4-type orbits that de-
pend on both transverse planes. These orbits are chosen with
the condition of having a maximum (positive or negative)
of amplitude at the position of the magnetic error as showed
in [4]. The orbits are called maxmax, minmax, maxmin and
minmin, and the three first letters correspond with the con-
dition on the X-plane amplitude, while the last three are for
the Y-plane; max is used to denoted a positive maximum,
while min is for a negative maximum.

During our studies, two ways to solve the system were
analyzed. First, assuming that the phase advances for the
correctors are equal and consequently by solving the system
explicitly. The second, performing the numerical solution.
In this paper the results using the numerical solutions given
by linalg.solve from PYTHON [8] are shown. The integrals
of the beta functions of the quadrupoles were obtained using
the Simpson rule.

COMPARISON WITH THE OLD
FORMULATION

TBT orbits were simulated in MAD-x [9] and the mod-
ule PTC [10] using the nominal lattice. Normal and skew
quadrupole errors were placed at IR5 and they were recover
with the techniques explained in the previous sections. Thin
normal quadrupole errors could be recovered with up to
seven significant figures, while thick normal quadrupole
errors were recovered within 0.1% uncertainty. All these
values were independent of the amplitude of the orbits as it
happened with the old formulation.
In order to investigate the sensitivity to noise of the new

formulation compared to the old formulation, Gaussian noise
with a σ equal to 10% of the orbit amplitude in the arcs was
added to the TBT simulated data still with magnetic errors
at IR5. The magnetic errors recovered using the old and
the new formulations are presented in Table 1. The sim-
ulation corresponds to the V6.5.seq for protons injection
with low β*, with (thick) magnetic errors included at lo-
cation of the quadrupoles (MQXB.A2.L5, MQXB.B2L5),
(MQXB.A2R5, MQXB.B2R5) and MQSX.3L5, at the same
time [11]. To simplify their names, in this paper, they are
called B1(Q1), B1(Q2) and A1, respectively. During the
simulation, the accelerator had the same tunes as selected
experimental data.
As presented, the new formulation reduces in half the

amount of statistical uncertainty σ for each magnetic error,
when compare to the old formulation. The analysis were
done on the same orbits and with the same conditions. The
results show that the new formulation gives a more robust
approximation when estimating the magnetic errors.
The results of both formulations were obtained from the

average of orbits as explained in [4], using the same con-
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Table 1: Comparison with the Old Formulation using Simulated Orbits

Sim LHC_B1 B1(Q1) σ B1(Q1) B1(Q2) σ B1(Q2) A1 σA1
10−6 [ m−2 ] 10−7 [ m−2 ] 10−6 [ m−2 ] 10−7 [ m−2 ] 10−4 [ m−2 ] 10−5 [ m−2 ]

New -9.93 1.55 -13.1 1.14 2.98 0.60
Old -10.1 2.48 -12.9 1.58 3.00 1.32

Table 2: Results using Old and New Formulation in Experimental Orbits

Data LHC_B1 B1(Q1) σ B1(Q1) B1(Q2) σ B1(Q2) A1 σA1
Apr13/10 10−6 [ m−2 ] 10−7 [ m−2 ] 10−6 [ m−2 ] 10−7 [ m−2 ] 10−4 [ m−2 ] 10−5 [ m−2 ]

New -8.28 6.98 -15.4 9.22 3.06 3.76
Old -9.15 3.36 -13.9 7.80 3.19 3.08

figuration parameters and δ differences of maximum 1.5
rads.
A practical advantage of the new formulation compare

to the old one, besides the fact that the BPM measurement
at the IR is not used, is that it is not necessary to pick up a
position for the equivalent magnetic error.
On the other hand, a theoretical advantage of the new

formulation, is that the system of equations is more flexible.

MEASUREMENTS USING LHC DATA
Table 2 shows results of the APJ analysis using both the

new and the old formulation on 2010 experimental data. The
same quadrupoles used in the simulations are analyzed in this
table. The predicted values for each of the two quadrupoles
proposed for correction are very close between the two
formulations and also with the values obtained with the
Segment-by-Segment method (see [12]), in contrast with
the results presented in [4], where no agreement was found
between the old formulation and the Segment-by-Segment
technique. Later, it was found that the origin of the disagree-
ment was that quadrupole Q2 was considered to be com-
posed of only MQXB2, when in reality it was composed of
MQXB2 and MQXA2.

As for the values of the uncertainties, the new formulation
has almost equal or higher uncertainties when compared
to the old formulation. This is not what is observed using
the simulated data. One reason for the unexpected behavior
might have inferred from the plots of the Action And Phase
analysis. The regions before and after the errors show higher
variations at the arcs, even higher than the expected ones,
therefore the experimental data could have a considerable
amount of different type of errors in the arcs of the LHC that
is not take into account in our analysis.

CONCLUSION
A reformulation of the Action and Phase Jump Analysis

Method was introduced where the dependency on the BPM
measurement at the IR region was suppressed. From the
errors analyzed on simulated orbits, it is concluded that the
reformulation leads to a reduction of uncertainty for the
measurement of magnetic errors at the triplets of a LHC IR.

More experimental data is needed to ratify the conclusion
from the simulation analysis, but in here it was shown that
the recovery of the magnetic errors using APJ technique
using both the old and the new formulation leads to a similar
values from what is obtained with the usual LHC technique,
Segment-by-Segment, on the contrary of what was reported
in [4].
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