
OPEN XAL CONTROL ROOM EXPERIENCE* 

P. Chu#, D. Maxwell, Y. Zhang, MSU, East Lansing, MI 48824, USA 
C.K. Allen, T. Pelaia, A.P. Shishlo, ORNL, Oak Ridge, TN 37831, USA 

Abstract 
This paper reports the control room experience, lessons 

learned, and quick deployment approach for the Open 
XAL application environment.  Open XAL is a java-based 
framework for building high-level accelerator 
applications, it is a major revision of the XAL framework 
which was developed at the Spallation Neutron Source 
(SNS). Open XAL is site neutral and may be deployed at 
multiple accelerator facilities.  Currently, Open XAL is 
installed at SNS and at the Re-Accelerator facility of 
Michigan State University.  At SNS we are in the final 
process of replacing the old XAL environment with Open 
XAL; we describe the upgrade process and our 
accelerator operations experience using Open XAL. At 
Michigan State University (MSU), Open XAL has been 
tested during a cryomodule commissioning and results 
will be shown. 

INTRODUCTION 
The XAL [1] based applications have been successfully 

applied to SNS commissioning and early operation. Open 
XAL [2], on the other hand, is the updated version of 
XAL with international collaboration effort. Besides any 
common software practice, it is particularly important for 
software usability and customer satisfaction, especially 
for a new version of an already-successful software. 
Control room tests for Open XAL also can uncover issues 
which cannot be found with any offline tests. Unique 
challenges such as co-existence of operation for XAL and 
the new Open XAL applications are described below. 
New applications based on the Open XAL library are also 
demonstrated. 

SNS CONTROL ROOM EXPERIENCE 
Given that SNS is fully operational, it provides both 

challenges and opportunities for migrating from the 
mature XAL platform to the new Open XAL platform. 
The primary opportunity is to verify the code in a real 
operational environment while the primary risk is failure 
of the software affecting machine performance for 
production. To mitigate this risk as well as to facilitate 
software verification, we have chosen to deploy both 
XAL and Open XAL side by side which itself presents a 
challenge.  

Following the summer of 2014 maintenance period, we 
have positioned Open XAL as the default accelerator 
physics toolset, and the old XAL code has been frozen 
and kept as a fallback and a benchmark source. All new 
applications and scripts are written against Open XAL. 

XAL and Open XAL Coexistence 
Running Open XAL alongside of XAL presents several 

challenges due to requirements and incompatibilities. 
XAL was built to run against Java 6, while Open XAL 
was built against Java 7. Due to a performance issue 
discovered in Java 7, it is not feasible to run XAL under 
Java 7. To support Java 6 for XAL and Java 7 for Open 
XAL, separate launch environments for XAL and Open 
XAL were configured using BASH scripts. 

Services presented a challenge since XAL uses XML-
RPC and Open XAL uses JSON-RPC over WebSockets. 
Services and their associated clients must both be running 
on the same software platform (either XAL or Open 
XAL) to communicate with each other. A service such as 
the PV Logger which both logs continuously and on 
demand from a client creates a problem since both XAL 
and Open XAL clients must continue to work and be able 
to request the PV Logger to log on demand. To address 
this issue, the PV Logger service was modified to allow 
an optional on-demand-only mode. The Open XAL 
variant is configured to log both on demand and 
continuously (normal mode) while the XAL variant logs 
just on demand to support XAL client requests without 
generating duplicate logs.  

Both XAL and Open XAL can read and write the same 
documents, but the accelerator optics input is different 
due to a new format for the online model configuration in 
Open XAL and ongoing device changes in Open XAL. 
Since it is common for documents to reference the 
associated accelerator optics, we needed to address this 
problem of a user opening a document referencing an 
XAL or Open XAL accelerator optics in an application 
running under the wrong platform. To address this issue, 
the Open XAL optics file includes a new version attribute 
which is set to 2.0 and the absence of this version or 
version 1.0 implies XAL. Both XAL and Open XAL code 
was modified to verify the accelerator optics version, alert 
the user and load the compatible optics file. 

 
Figure 1: Open XAL Application Launcher. 

With these changes XAL and Open XAL can coexist 
without issue and both versions can open documents 

 ___________________________________________  

*Work supported by the U.S. Department of Energy Office of Science 
under Cooperative Agreement DE-SC0000661 and DE-AC05-
00OR22725 
#chu@nscl.msu.edu              

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI027

MOPWI027
1214

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools



created by the other allowing for a seamless transition for 
users. 

Remote X11 Issue 
Our normal XAL deployment model is to configure the 

Launcher to run applications round robin on one of five 
dedicated physics servers via ssh (secure shell) using a 
physics account common across these servers. 
Unfortunately, Java 7 and 8 both have serious 
performance issues with the display of Swing menus for 
remote X11 applications. A menu may take many seconds 
to render after a mouse click which is unacceptable. 
Ultimately, our best solution (found and implemented by 
our Controls group) to this problem was to upgrade the 
console hardware to handle the load of running the 
applications locally instead of on the physics servers. To 
best manage the runtime environment, applications still 
run under the physics account, but this is done using 
UNIX user substitution instead of ssh. 

Software Verification 
To gain user acceptance, the software must be verified 

to offer a user experience as good as or better than XAL 
and give the correct answer. While we tested code offline, 
many issues can only be identified when running on the 
live machine in the hands of expert users. Most of the 
issues encountered involved either new code in Open 
XAL or imperfect code substitution for obsolete code that 
was not ported to Open XAL. For applications most 
critical to machine production, we spent machine studies 
verifying Open XAL applications against their XAL 
counterparts. This effort is ongoing. Figs. 2 and 3 show 
some Open XAL applications running in the SNS Control 
Room. 

 
Figure 2: Profile Tools and Analysis Application. 

 

Figure 3: SCL (Superconducting Linac) Wizard. 

New Application 
A new application was developed exclusively in Open 

XAL for quickly tuning the cold linac. It was developed 
in the Jython scripting language and takes advantage of 
the new support for script based applications in the Open 
XAL version of the application framework. 

Summary 
XAL code has been frozen and all new development is 

happening with Open XAL. Open XAL applications are 
now the default SNS Control Room applications. 
Software verification work is ongoing. 

MSU REA CONTROL ROOM 
EXPERIENCE 

Open XAL based applications have been deployed and 
tested during a Re-accelerator (ReA) cryomodule 
commissioning at the National Superconducting 
Cyclotron Laboratory (NSCL). Prior to the control room 
test for the applications, the software has to be built and 
deployed. Additionally, data needed for running the 
applications are prepared. The entire process completes a 
demonstration for setting up Open XAL with a small 
machine. Details for the ReA Open XAL tests are 
described below. 

Data Preparation 
Because there is only one cryomodule for the test, it is 

not necessary to prepare a full set of lattice data with all 
detail information. The only data files needed are the 
Open XAL optics file and the online model initial 
condition file. With only a total of 17 devices, it is trivial 
to manually compile the files. Note that the model initial 
condition is solely for satisfying the Open XAL 
application initialization purpose and for running the 
model-based virtual accelerator. 

Besides the application initialization data files, control 
system signal logging service also needs to be populated 
with proper signal names or EPICS Process Variable (PV) 
names. 

Software Deployment Preparation 
There has not been a well-established, rigorous 

software deployment procedure developed for NSCL; 
therefore, a compromised quick solution was selected. 
The Open XAL base library was built into a Java JAR file 
while individual Java applications were also built into 
their own JAR files. Launch scripts for each application 
then contains Java class paths to the proper JAR files. 
Similar to SNS approach, applications were running on a 
physics server with Windows Remote Desktop utility for 
local console display. 

Virtual Accelerator 
Before the software could be tested in the control room, 

it is preferable to test as much against a machine 
simulator, or Virtual Accelerator (VA), as possible. Open 
XAL provides a VA application which allows applications 

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI027

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

MOPWI027
1215

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



to test for at least control system connectivity and certain 
physics tuning procedures.  

PVLogger and Save/Restore Service 
A combined functions of general purpose PV logging 

service, and machine settings save and restore service 
along with Open XAL Online Model replay capability 
was developed at MSU. The service can take machine 
snapshots periodically or on-demand. Over 5,000 
snapshots were taken for a collection of 50 PVs during 
the cryomodule test period with no failures. Fig 4 shows a 
snapshot of logged PV values from the service’s backend 
relational database. 

 
Figure 4: Screen snapshot for logged PVs. 

Scan Application 
A general signal scan or correlation plot application 

was tested with simple set-point and read-back signal 
correlation. Shown in Fig. 5 is an RF cavity phase set-
point versus its read-back from 0 to 360°. During the 
phase scan tests, we found that the default phase range at 
NSCL is from 0 to 360° as opposed to the XAL/Open 
XAL’s phase convention of -180° to 180°. For future 
operation, the phase convention might be part of the site 
specific configuration. 

 
Figure 5: Screen snapshot for the Scan Application. 

Degauss Application 
An application, Degauss, was developed for quickly 

removing hysteresis in magnets by synchronously cycling 
the solenoid and corrector magnets. Fig.6 shows the 
magnetic field level quickly damped down with the 
application (the set-point and read-back curves are nearly 

identical, the two distinct curves are for a solenoid and its 
associated dipole corrector). 

 
Figure 6: Screen snapshot for the Degauss Application. 

Scripting Environment 
Often in the control room, a quick program is needed to 

perform certain urgent tasks. It is much easier to code up 
a quick program with scripting languages than 
conventional programming languages. Because Open 
XAL is written in Java, it is trivial to use MATLAB or 
JYTHON as the scripting language. UNIX Shell Scripts, 
Windows Batch or Power Shell is also convenient for 
automating certain tasks such as application launching 
scripts with proper configurations set. Because Windows 
OS is the traditional NSCL control room computing 
platform, we prepared scripts in Windows Batch files. 

CONCLUSION 
The control room experience for both SNS and ReA is 

quite positive. Many applications and services were tested 
with no significant functional issues. On the other hand, 
other issues were uncovered and resolved. It is worth to 
mention that the original computing approach of running 
XAL applications on server computers and displaying 
back to operator consoles might not be a good solution 
due to performance and security concerns; instead, 
applications can run directly on newer console computers 
with much more computing power and the data can be 
saved on shared file systems. The Open XAL Control 
Room experience also provides us immediate future 
improvement plans. 

ACKNOWLEDGMENT 
The authors would like to thank both SNS Operation 

and Controls Groups, and NSCL ReA and SRF Teams for 
their full support on all the needs during the preparation 
and control room tests. 

REFERENCES 
[1] J. Galambos et al., “XAL Application Programming 

Structure”, Proceedings of PAC 2005, Knoxville, TN 
2005 

[2] Open XAL project web site: 
http://xaldev.sourceforge.net 

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI027

MOPWI027
1216

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools


