
OPEN XAL SERVICES ARCHITECTURE* 

T. Pelaia II#, ORNL, Oak Ridge, TN 37831, USA  

Abstract 
Open XAL is an accelerator physics software platform 

developed in collaboration among several facilities 
around the world. It includes a powerful new services 
extension that allows for natural remote procedure calls. 
The high level services interface is based upon custom 
implementations of modern standard protocols such as 
JSON-RPC and WebSockets. This choice of modern 
protocols allows for flexibility such as seamless 
communication with web clients free of plugins plus rich 
object type support. The JSON parser was designed for 
convenient data type transformations with easy 
extensibility, high performance and low memory 
overhead. The Open XAL services architecture features 
a simple application programming interface, high 
performance, memory efficiency and thread safety. 

INTRODUCTION 
Open XAL [ , ] is a Java based platform for building 1 2

accelerator physics software. The software products can 
be categorized as either application or standalone 
service.  Here, an application refers to software with a 
user interface that is launched by an end user and runs 
until the user quits the application. A standalone service 
is software that runs perpetually unattended and has no 
user interface. Other client applications may 
communicate with a service for management or to 
display data from the service. Services are useful for 
monitoring, logging and certain calculations that are best 
suited to be offloaded from the client. 

The Open XAL services framework is designed to 
provide a high level API to discover and communicate 
with services over standard protocols implemented 
internally. The communication protocols were chosen to 
allow for both thick application and thin web browser 
clients. 

FEATURES 
The services framework is designed to provide a  high 

performance, low overhead remote communication 
mechanism that translates local Java calls into remote 
messages without having to provide stubs. Furthermore, 
it provides for dynamic registration and lookup which 

eliminates the need for configuring service addresses 
and allows services to be launched from any server on 
the local network rather than tied to one specific server. 
The implementation is thread safe and can process 
multiple concurrent calls. 

PROTOCOLS 
The services framework is built upon three standard 

protocols: multi-cast DNS, JSON-RPC [ ] and 3
WebSocket [ ]. The multi-cast DNS protocol is 4
implemented using the external JmDNS [ ] library. The 5
JSON-RPC and WebSocket protocols have been 
implemented directly in Open XAL. All three protocols 
are wrapped in the services framework so as to allow the 
public API to be independent of these internal protocols. 
Most of the interaction with the services framework is 
through the ServiceDirectory class and specifically the 
default singleton of this class known as the “default 
directory.” 

Multi-cast DNS 
The open source JmDNS library provides the 

implementation of multi-cast DNS that is used in Open 
XAL. Multi-cast DNS allows for dynamic registration 
and lookup of services. A service is registered by name 
and type pair and are bound to the provided IP address 
and port. Clients can lookup services using the name and 
type pair and the IP addresses and ports of matching 
services are provided. 

The services framework hides the details of the 
underlying JmDNS library. A service is simply registered  
using the default directory passing only the service 
name, a Java interface and the service provider 
implementing the Java interface. Internally, the fully 
qualified lowercase name of the Java interface is 
converted to a properly formatted multi-cast DNS type 
by replacing periods with underscores and appending 
“_tcp.local.” to provide a unique type that conforms to 
the requirements. 

JSON-RPC 
A variant of JSON-RPC is the messaging protocol that 

is used to encode messages with JSON constructs.  This 
protocol is hidden from the caller as method calls are 
automatically converted to the messaging protocol. 
Internally, a message request is encoded as a JSON  [ ] 6
object (also known as a dictionary) using the “message,” 
“params” and “id” keys. The message parameter consists 
of the service name followed by the method name 
separated by “#” such as “MyService#doSomething” for 
example. The params are an array of JSON encoded 
parameters to pass. The id parameter is an incremented 
integer that is used to uniquely identify the request.  

A custom JSON implementation is used to efficiently 
encode and decode JSON to and from Java objects. This 

  _____________________________________________

* This manuscript has been authored by UT-Battelle, LLC, under 
Contract No. DE-AC0500OR22725 with the U.S. Department of 
Energy. The United States Government retains and the publisher, by 
accepting the article for publication, acknowledges that the United 
States Government retains a non-exclusive, paid-up, irrevocable, 
world-wide license to publish or reproduce the published form of this 
manuscript, or allow others to do so, for the United States 
Government purposes. The Department of Energy will provide public 
access to these results of federally sponsored research in accordance 
with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan). 

# pelaiata@ornl.gov

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI049

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

MOPWI049
1267

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



implementation is highly tuned for both time and 
memory performance while allowing support for many 
Java classes beyond those defined in the standard JSON 
set of string, number, dictionary, array, true, false and 
null. Custom types are supported using the dictionary 
type with a special type key named “__XALTYPE” and 
corresponding value key named “value.” Using this 
feature, the coder defines support for a rich set of 
predefined data types including all of the Java primitive 
types, common collection types, Serializable  
conforming types and more. Java method calls of an 
arbitrary number of parameters consisting of any 
combination of these types (even multidimensional 
arrays) and returning any combinatory of these types are 
supported. For example, a method could be called taking 
a string and an array of double precision numbers as 
parameters and returning an integer. The return value is 
returned using a dictionary with keys “result,” “id” and 
“error” where the id matches the request id, the result is 
the encoded Java return value and the error is an  
encoded exception if any. 

WebSocket 
The JSON-RPC messages are packaged and passed 

through a critical subset of the WebSocket protocol. A 
custom implementation was developed to provide high 
performance and low memory consumption. WebSocket  
(as with JSON) was chosen since it is supported natively 
in modern web browsers allowing the option for web 
clients without the need for plugins. The service 
framework has been successfully tested using both 
Safari on Mac OS X and Firefox on Linux web 
browsers. 

HIGH LEVEL API 
The services framework hides the underlying 

protocols and provides a high level API that makes it 
easy to implement a service and a client. 

Service Handler 
Implementing a service involves providing a Java 

interface which declares the remote methods and a 
handler which implements this interface. The interface is 
specified in the service’s extension since it is made 
available to any other application or service. The 
interface can optionally mark any method with the 
“@OneWay” annotation to indicate that the method will 
not return after execution and thus will be a non-
blocking call. The handler class is internal to the specific 
service and should implement the interface. 

Upon startup, the service should register itself with the 
interface, service name and handler. This is done with a 
single call to the default directory’s registerService() 
method. Remote method calls to the service will 
automatically be forwarded to the registered handler’s 
corresponding method for processing. 

Client Calls 
The client first needs to discover which services are 

available on the local network. It can do this either by 

setting up a monitor with callback or with a  single call 
to the default directory’s findServicesWithType() 
method passing the Java interface of the service to 
lookup and a timeout. For the latter approach, this 
method returns an array of service references that serve 
the requested interface. Upon picking a single service 
reference from the array, the client makes a call to the 
default directory’s getProxy() method passing the 
service’s interface and the desired service reference. The 
returned proxy implements the methods of the 
corresponding service’s interface. The client can make 
calls to this proxy as if it were a local object and those 
calls will automatically be dispatched to the remote 
service. The proxy also implements methods that 
provide information about the service itself such as the 
service name, host and port. 

When using the monitor approach, the client can use 
the callback to detect new services and determine if 
existing services have terminated. 

Concurrency Support 
A concurrency support class, RemoteDataCache, is 

provided to prevent waiting on a response from a remote 
service. It provides a mechanism to submit a request to a 
remote service and receive a callback when a response 
becomes available. Multiple pending requests result in a 
single coalesced response. This tool can be tested for an 
active connection. 

FUTURE PLANS 
Building out infrastructure for web applications [ ] is 7

the main focus of future efforts for the services 
framework. A simple web application has been 
demonstrated, but work needs to be done to formally 
provide support for three different launch mechanisms: 
Direct, Directed and Directory. 

In the Direct launch mechanism, the service registers 
itself upon launch and immediately launches the web 
browser on the same node and the client connects to the 
service. This requires zero configuration and has already 
been demonstrated; however, on Linux an issue has been 
encountered in launching the browser automatically. 

In the Directed launch mechanism, a launcher 
executable is run on the local console. The launcher can 
launch a service on a server on the local network and 
then it monitors to discover the services on the local 
network. The client web applications are then launched 
on the local console and the launcher configures it to be 
bound to the corresponding service. 

The Directory launch mechanism has a directory 
executable that runs with a fixed IP address and port and 
is responsible for spawning the services in response to a 
client request. This approach is somewhat more similar 
to traditional web services and would be most practical 
for web clients which are intended to be run outside of 
the accelerator network. 

Also, while the underlying JSON coder is easily 
customizable to support any Java type, the services 
framework does not expose this feature and thus only 
supports the rich set of predefined data types. Exposing 
extensibility of custom data types may be supported in 
the future. 

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI049

MOPWI049
1268

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools



REFERENCES 
[1] Open XAL website: http://xaldev.sourceforge.net
[2] T.  Pelaia  II,  “Open  XAL  Status  Report  2015”, 

MOPWI050,  these  proceedings,  IPAC’15, 
Richmond, VA (2015)

[3] JSON-RPC website: http://json-rpc.org
[4] WebSocket  Protocol  website:  http://tools.ietf.org/

html/rfc6455
[5] JmDNS website: http://jmdns.sourceforge.net
[6] JSON website: http://json.org
[7] T. Pelaia II, “Future of High Level Apps at SNS”, 

ESS  Open  XAL  Workshop  2014;   https://
indico.esss.lu.se/indico/event/151/contribution/19

.

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI049

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

MOPWI049
1269

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


