
OPEN XAL STATUS REPORT 2015*

T. Pelaia II#, C.K. Allen, A. Shishlo, A. Zhukov, ORNL, Oak Ridge, TN 37831, USA
Y.C. Chao, C. Gong, F. Jones, R. Newhouse, TRIUMF, Vancouver, BC V6T 2A3, Canada

P. Chu, D. Maxwell, Y. Zhang, MSU, East Lansing, MI 48824, USA
R. Fearn, L. Fernandez, E. Laface, M. Munoz, ESS, Lund, Sweden
J. Freed, University of South Carolina, Columbia, SC 29208, USA
P. Gillette, P. Laurent, G. Normand, GANIL, CAEN 14076, France

H. Hale, University of Tennessee, Knoxville, TN, USA
Y. Li, CSNS, Dongguan Campus, Institue of High Energy Physics, Chinese Academy of Sciences,

Dongguan 523803, China
I. List, M. Pavleski, Cosylab, Ljubljana, Slovenia

P. Scruggs, East Tennessee State University, Johnson City, TN, USA

Abstract
Open XAL is an accelerator physics software platform

developed in collaboration among several facilities
around the world. The Open XAL collaboration was
formed in 2010 to port, improve and extend the successful
XAL platform used at the Spallation Neutron Source for
use in the broader accelerator community and to establish
it as the standard platform for accelerator physics
software. The site-independent core is complete, active
applications have been ported, and now we are in the
process of verification and transitioning to using Open
XAL in production. This paper will present the current
status and a roadmap for this project.

INTRODUCTION
Open XAL [] is an open source accelerator physics 1

software platform written in Java. The Open XAL project
began in mid 2010 as a response to requests from the
international accelerator physics community to adopt an
open source accelerator physics platform based on XAL
[] from the Spallation Neutron Source (SNS) at Oak 2
Ridge National Lab (ORNL) and establish a standard
platform for accelerator physics software.

The goals of the project are to provide a common
accelerator physics core to be developed in collaboration,
provide a rapid development environment and to
modernize the source code. Since the last status report [], 3
the development effort has shifted from porting code to
verification, modernization and new functionality. The
API has stabilized, and the project is production ready.

This paper covers the collective contributions of the
collaboration.

SOFTWARE HIERARCHY
The software is grouped among the core, extensions,

plugins, services, applications and scripts. The core
consists of packages that include the accelerator object
graph, the online model, abstract channel interface and
general supporting tools such as common math libraries,
archiving, messaging, database access and concurrency.
This core is intended to be shared in common across all
Open XAL distributions, and it has no compile time
dependency on other components.

Extensions and plugins are components which may
optionally depend on other extensions and plugins and the
core. A plugin differs from an extension in that the core
depends on a plugin being implemented (but not the
actual implementation) whereas the core has no
dependency on an extension. Plugins consist of controls
channel access support and database adaptors. For
example, the core specifies generic database tools, but a
database adaptor plugin provides support for a specific
database driver. Extensions include packages of general
use in applications, scripts and services but not in the
core. Examples of extensions include the application
framework, service framework, lattice generation, fitting,
scanning and widgets such as plotting tools.

Applications, scripts and services are executables and
may depend upon the core, plugins and extensions.
Applications and scripts are launched by users and have a
user interface whereas services are headless and run
perpetually in the background independent of user
interaction. Applications differ from scripts in that
applications are written in Java and are thus fully
compiled prior to runtime versus scripts that may be
written in a Java variant of Ruby or Python scripting
languages and are not compiled prior to runtime.

A top level site directory contains optional site specific
resources and configurations that take precedence over
resources and configurations of the same name in the

* This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC0500OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for the United States
Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

pelaiata@ornl.gov

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI050

MOPWI050
1270

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

main source tree and thus offer an opportunity for site
specific customization.

COLLABORATION
The active collaboration consists of the China

Spallation Neutron Source (CSNS) in Dongguan, China,
European Spallation Source (ESS) in Lund, Sweden,
Facility for Rare Ion Beams (FRIB) at Michigan State
University in Lansing, MI, Grand Accélérateur National
d’Ions Lourds (GANIL) in Caen, France, SNS in Oak
Ridge, TN, and TRIUMF in Vancouver, Canada.
Members from each facility contribute code, report issues
and participate in workshops and monthly online
meetings.

Code Sharing
The code is placed in Git [] repositories [] hosted on 4 5

SourceForge and a ticket system is used to track tasks.
The Git subtree feature is used extensively so subtrees of
the code can be shared while allowing each site to choose
which applications, scripts, extensions, plugins and
services to include in their site specific branch.

SITE STATUSES
The operational status varies across the facilities and

hence each facility has different needs for Open XAL,
and the status at each site varies accordingly.

CSNS
MEBT commissioning for CSNS will use applications

based on a mature XAL variant rather than Open XAL
due to the confluence of commissioning with the nascent
development of Open XAL. Several new applications
have been developed to accommodate the Rapid Cycling
Synchrotron (RCS), magnet database, lattice database,
etc. These applications will be ported to Open XAL in the
near future.

ESS
The Beam Physics group at ESS decided in November

2014 to use Open XAL for beam commissioning. The
Open XAL model has been modified to handle field maps
for cavities [] and was benchmarked against TraceWin 6
[]. A python integration environment based on JPype [] 7 8
has also been developed. The Open XAL solver extension
was used for matching the initial parameters of the beam
based on ESS specific criteria. Automated installation
scripts were created for Mac and Linux operating
systems. Optics files are generated as custom XML files
called “LinacLego” and are convertible to standard Open
XAL format using an extension.

FRIB
Open XAL is currently a backup option for high level

accelerator physics applications at FRIB, and thus has an
uncertain future here. Several Open XAL applications
have been tested in the control room during the
September 2014 commissioning of a new cryomodule
successfully demonstrating use of Open XAL for linac
commissioning and beam tuning. A model platform was

developed which allows integration with IMPACT [] and 9
MADX [] as additional options for modeling. 10

GANIL (SPIRAL2 Project)
SPIRAL2 has adopted the OpenXAL September 2014

snapshot. Hibernate is used for database interaction, and
the accelerator input XML files are generated from the
database. The core has been modified slightly to support
the concept of equipment in the accelerator object graph.
Tools were developed to allow user interaction with
process variables. Custom SPIRAL2 application adaptor
and document subclasses have been developed as
foundations for applications adding support for such
things as displaying the accelerated beam label in the title
bar, automatic combo-sequence selection, online/offline
accelerator selection and the Nimbus look and feel.
Several applications have been developed and others are
being developed.

SNS
At SNS, the old XAL code has been frozen with the

exception of critical bug fixes if necessary. All active
applications (several dozen) have been ported to Open
XAL, and it is now deployed as the default high level
accelerator physics software platform. Several
applications have been debugged and verified as
production ready. XAL is still available as a fallback
should critical bugs be encountered.

TRIUMF
At TRIUMF, a low energy empirical model has been

successfully tested, and a magnet dithering and beam
based alignment tool have been developed. The
Experiment Automator application has been developed
for automated data acquisition and contributed to the
Open XAL community. An orbit correction package has
been planned.

DEVELOPMENT HIGHLIGHTS
Several of the many developments since the last status

report will be summarized here. Specifically, the ones
discussed here are of common use across the sites.

Continuous Integration
ESS has setup a Jenkins continuous integration server

for Open XAL providing analysis which has been used to
improve the code.

Online Model
The online model has undergone major architectural

improvements [] which we briefly highlight here. 11
Processing of simulation data has been separated from
probe state population. This approach keeps analysis data
separate from the trajectory and allows for richer
simulation computations on the trajectory and its probe
states.

Probes, probe states and trajectories have been
modified to use Java Generics [] which allows for 12
compile time type checking and consistent typing across
these classes.

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI050

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

MOPWI050
1271

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The performance of fetching states from a trajectory
has been improved significantly, and is especially noted
when working with trajectories over a large number of
states.

The lattice generator which maps model elements to
device nodes has been rewritten making it simpler to
maintain the code and support new device types.

The elapsed time mechanism has been refactored for
RF Gaps leading to more sustainable code and removing
the use of static variables to maintain state.

Site Customization
Site specific resources can be added and override

existing resources of the same name if any. Site specific
build properties can be specified and take precedence
over the defaults.

Application Framework
The application framework now supports applications

written entirely in a Java based scripting language such as
JRuby [] or Jython []. 13 14

Services Framework
The services framework [] now implements JSON-15

RPC [] over the WebSocket [] protocol which allows 16 17
for client side web applications to natively communicate
with Open XAL services.

Tools
One old external library of open source widgets that

had been included in XAL contained a very useful wheel
switch which was the only control in use from that library.
The code for the wheel switch was modernized, issues
addressed and brought directly into the Open XAL source
thus eliminating dependence on that external library.

Applications
Significant improvements have been made to the

Virtual Accelerator application including, adding solenoid
support, allowing set points to be edited directly and
adding a data plot for beam size and positions. A new
application that allows for experimental automation was
developed and contributed to the master branch.

FUTURE PLANS
Here are a highlights of a few of the many tasks that lay

ahead for Open XAL. Currently Open XAL depends on
Java 7. Soon, we plan to embrace Java 8 as our new
dependency so as to allow for new Java 8 constructs and
packages in the code base.

Online Model
Plans are for each RF Gap to be able to maintain its

own transit time factor functions. Also, the model needs
to be benchmarked against other established machine
codes.

JavaFX
With the adoption of Java 8, we can embrace JavaFX

[] as a natural replacement for the Swing-based Bricks 18

[] GUI builder and framework. Support for JavaFX will 19
also be added to the application framework.

Unit Tests
Support for unit tests will be extended to other

components beyond just the core.

ACKNOWLEDGMENT
We are grateful for the leadership contributions of

Sheng Peng of FRIB who organized online meetings and
drove early momentum of the Open XAL collaboration.

REFERENCES
[1] Open XAL website: http://xaldev.sourceforge.net
[2] J. Galambos et al., “XAL Application Programming

Structure,” Proceedings of PAC 2005, Knoxville, TN
(2005).

[3] T. Pelaia II, “Open XAL Status Report 2013,”
MOPWO086, these proceedings, IPAC’13, Shanghai,
China (2013).

[4] Git website: http://www.git-scm.com
[5] Open XAL Git Repositories website: http://

sourceforge.net/p/xaldev/_list/git
[6] E. Laface, I. List, “Field map model for the ESS

Linac simulator,” MOPJE031, these proceedings,
IPAC’15, Richmond, VA (2015).

[7] TraceWin website: http://irfu.cea.fr/Sacm/logiciels/
index3.php

[8] JPype website: http://jpype.sourceforge.net
[9] IMPACT website: http://amac.lbl.gov/~jiqiang/

IMPACT/index.html
[10] MADX website: http://madx.web.cern.ch
[11] C.K. Allen et al., “Architectural Improvements and

New Processing Tools for the Open XAL Online
Model,” MOPWI047, these proceedings, IPAC’15,
Richmond, VA (2015).

[12] G. Bracha, “Generics in the Java Programming
Language,” July 2004; http://www.oracle.com/
technetwork/java/javase/generics-tutorial-159168.pdf

[13] JRuby website: http://jruby.org
[14] Jython website: http://www.jython.org
[15] T. Pelaia, “Open XAL Services Architecture,”

MOPWI049, these proceedings, IPAC’15, Richmond,
VA (2015).

[16] JSON-RPC website: http://json-rpc.org
[17] WebSocket Protocol website: http://tools.ietf.org/

html/rfc6455
[18] JavaFX website: https://www.oracle.com/

t echne twork / j ava / j avase /ove rv i ew/ j ava fx -
overview-2158620.html

[19] T. Pelaia II, “XAL Application Framework and
Bricks GUI Builder,” Proceedings of ICALEPCS
2007, Knoxville, TN (2007).

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI050

MOPWI050
1272

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

