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Abstract 
Beam Loss Monitoring (BLM) System is an essential 

part to protect accelerator from machine faults. Compared 
with the empirical or uniform BLM arrangement in most 
accelerators, our new optimization approach proposes a 
“minimum spatial distribution” for BLM network. In this 
distribution, BLMs shall be placed at a small set of 
“critical positions” that can detect all failure / FPS trigger-
able events of each fault mode. In additional, to 
implement a more advanced function of fault diagnosis, 
BLM should also be placed at “discrimination points” for 
fault-induced loss pattern recognition. With examples of 
FRIB failure event simulations, the author demonstrates 
the proof of concept to locate these “critical positions” 
and “discrimination points” for the minimum spatial 
distribution of BLMs.  

INTRODUCTION 
As an essential part of Machine Protection System 

(MPS) input, the BLM system plays an important role to 
detect and diagnosis machine faults. This imposes 
categorized functional requirements for BLM system. For 
example, the fault detection requires BLM device to have 
fast response for big losses, while the fault diagnosis 
requires BLM device sensitive enough to diagnose issues 
with beam tuning/slow losses and able to differentiate 
between controlled and uncontrolled losses. These 
requirements determine the type and structure of BLM 
system, e.g., FRIB BLM system including fixed position 
Halo Monitor Ring, BCM and movable radiation 
detectors. In this paper, we are not going to discuss the 
structural determination of BLM system, instead, we will 
focus on the spatial optimization of a pre-assumed BLM 
system.  

Our goal of spatial optimization for fault detection is to 
minimize the number of BLMs while still be able to 
detect all Fast Protection System (FPS) trigger-able 
failure events that generate significant losses. To achieve 
this, we need to quantify correlations between BLM 
locations for classes of events, so that at least one BLM at 
the “critical positions” can trigger FPS when a 
component-failure event induces significant losses. 
Section 2 introduces the methodology to find the 
ensemble of “critical points”, with the simulation example 
of single cavity failures. 

Fault diagnosis, or loss pattern recognition, is a more 
advanced functional requirement for BLM network. It 
was typically determined empirically at most accelerators. 

To prepare for loss pattern recognition, we need to put 
detectors at “discrimination points” that can distinguish 
patterns. Section 3 shows how to identify discrimination 
points for a fault mode with the principal component 
analysis (PCA) [1] method. 

CRITICAL POSITIONS 
As the first goal of spatial optimization for BLM 

network, we are looking for a set of “critical positions”, 
where at least one BLM can trigger FPS when a failure 
event induces over-threshold losses.  

Example Fault Mode Simulation 
In order to demonstrate the methodology to find 

“critical positions”, we simulated loss distributions of 
single cavity quenching events. In the simulation, every 
accelerator element in the FRIB lattice was considered a  
loss point. In total there are 572 element/loss points in 
FRIB lattice. To simulate cavity failure event, we turned 
off one cavity’s voltage and phase completely, did particle 
tracking and simulated particle loss power with IMPACT 
[2]. By turning off the 332 accelerating and bunching 
cavities one by one, we got 241 loss distributions. The 
other 91 cavities are in the high energy part, where 
transverse emittance growth from longitudinal mismatch 
takes longer distance and therefore the failures do not 
necessarily generate losses.  

Using the same terminology in Statistics, the loss 
positions are “variables” or “dimensions”, and the cavity 
failure are “observations”. The loss matrix for single-
cavity-failure mode is therefore 572 variables × 241 
observations. 

Correlation Matrix 
As we mentioned in the introduction, the “critical 

positions” are defined based on quantifying correlations 
between BLM locations, i.e. loss points, for classes of 
failure events. If a group of adjacent loss positions are 
highly correlated with each other in positive direction, 
they can be considered as a “localized loss area” and only 
one BLM needs to be placed there. 

To quantify the “localized loss area”, we need to 
compute the correlation matrix  for matrix , 
whose element  is the correlation coefficient of ith 
column and jth column: 

 . 

 is the covariance of the ith and jth column/loss 
position, and  is the standard deviation of ith 
column.  In our case for beam loss monitoring, we 
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consider  as strong correlation between loss 
positions. 

Figure 1 plots the correlation matrix for single-cavity-
fault mode. Since we are looking for critical positions 
where detector can trigger FPS, we zero out the losses 
below FPS trip threshold (e.g. 10 W) before calculate the 
correlation matrix. In addition, for better contrast, all 
correlations less than 0.45 are excluded from Fig. 2. 

 
Figure 1: Colour plot of loss positions’ correlation matrix 
for single cavity fault mode. Colours represent the 
strength of correlation, with the minimum of 0.45. 

 
Figure 2: Coverage of single cavity failure events at 7 
positions. Every point corresponds to a FPS-triggerable 
event at this position. >95% failures can be triggered by 
BLM at these 7 critical positions. 

There are at least 4 obvious “localized loss areas” as 
squared by the black box, i.e., we may only need 4 
positions to detect losses in these areas. But the 4 points 
might not be enough to cover all the single-cavity-failure 
events. Actually they can only detect a half of 241 failure 
events. 

Ensemble of Critical Positions 
To ensure a full coverage of failure detection, we need 

to re-visit the original loss matrix , find critical 
positions outside of these areas that have big losses for 
the uncovered patterns. An effective way is to sum over 
each row of  (i.e. losses of 241 failure event at a 
position) and sort the loss positions in a descending order 

of total loss. Starting with the largest total loss, pick only 
one critical point in each “localized loss area”, i.e. [442, 
564, …, 247, …, 327, …, 57, …,158, …, 26, …], add 
more loss positions outside of “localized loss areas” until 
they cover all failure events. Figure 2 shows that 5-7 
critical positions can already detect >95% of single-
cavity-failures and trigger FPS. 

DISCRIMINATION POINTS 
An ideal beam loss monitor network should be able to 

quantify the following functions: 
1) P(error-loss): probability of error sources, given 

a loss distribution; 
2) P(loss-detector): probability of losses to reach a 

detector; 
3) S(detector): detector response function. 

While 2) and 3) can be simulated [3] with radiation 
transport codes, 1) is a more advanced requirement that 
always be determined empirically. During the machine 
operation, tons of loss data have been collected but rarely 
“mined”. In this paper, we are trying to pave the way to 
P(error-loss) knowledge base by first place BLM at 
“discrimination points” that can distinguish between fault 
modes and failure events. 

Principal Component Analysis  
Solving P(error-loss) is essentially a pattern recognition 

problem. Feature analysis, as a popular theory of pattern 
recognition, usually has two steps: 

1) Recognition of “significant features” rather than 
reading an exact template, for each fault mode; 

2) Contrasts/differentiates between failure events with 
“distinctive features”. 

To figure out these features, or discrimination points, 
Principal Component Analysis (PCA) [1] is usually an 
effective tool.  

Features for Single-Cavity Fault Mode 
We applied the PCA transformation to the single-cavity 

failure induced loss matrix . Figure 3 plots the 
histograms of eigenvalues for the first 4 principal 
components (PC), from which we can see the first PC 
accounts for 97% of the variance in the data, or 99% with 
the second PC. This is a dramatic reduction in analysis 
dimensionality from 572 to 1 or 2, i.e. PC1&PC2 as a 
linear combination of variables include “significant” and 
most “distinctive” features / variables. 

 
Figure 3: Eigenvalues for the first 4 PCs and the 
cumulative variations, for the single-cavity-fault-mode. 
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To extract “significant features”, Figure 4 shows the 
weight/loading of each variable in PC1 and PC2. The 
variables that have more weight/loading account for 
major difference between cavity failure induced loss 
distributions, and therefore are considered “significant 
features” for the single-cavity fault mode. As shown in 
Fig. 4, the 11th and 14th multipole magnets, as well as the 
13th dipole magnet in the FRIB lattice are obviously 
“significant features”.  

 
Figure 4: Influence/loading of each original variable upon 
principal component 1 & 2.  
 

Figure 5 shows the 241 cavity failure events in the 
significant feature space, or at the three discrimination 
points. The more distance between points, the easier to 
distinguish them with only “significant features. About 
half of the patterns are visually distinguishable. For the 
points collapse together, we need to exclude significant 
features and re-do PCA for the rest variables to further 
locate “distinctive features” between patterns. If there is a 
sample loss measurement dominated by a certain cavity 
failure, it will be presented as a point in the feature space 
and the adjacent points in the space can be considered as 
potential error sources. In another word, if the observed 
loss patterns were in conformance with knowledge base, 
then the projections in the feature space will provide a 
probability for dominated error source.  

Figure 5: Significant feature space and cavity failure 
events projected in the space. 

CONCLUSION 
We have defined two goals of spatial optimization for 

BLM network: place detectors at “critical positions” for 
critical machine protection, and “discrimination points” 
preparing for loss pattern recognition. By computing and 
grouping the correlation coefficients of loss positions, we 
demonstrate the proof of principle of “critical positions” 
for the single cavity failure mode. To complete the 
optimization, we need not only more simulations on 
machine faults induced losses, but also experimental 
benchmark with real loss detectors. 

As a preparation for fault diagnosis, i.e. loss pattern 
recognition, we want to place the detector at the 
“discrimination points” that can maximize the variance 
between patterns. We use PCA to demonstrate the feature 
analysis for single cavity failure mode as a proof of 
concept. The path forward can be generalized as 
following strategy: 

 
The core of this strategy is to build a “pattern base”, 
which starts with simulated patterns that were 
benchmarked by experiments, but is continuously feed 
with new patterns measured and can also be corrected by 
case-based reasoning with expert decision. To make this 
strategy feasible, we may need some pre-requisite such as 
one or two dominated error sources and effective 
classification between patterns.  
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