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Abstract 
This work aims to understand the single pass FEL 

dynamics with an initially cold beam, through a semi-
analytical model, based in a group’s previous works in 
beams [1, 2]. The central point of the model is the 
compressibility factor, which allows establishing the 
transition from Compton to Raman regimes. The model is 
useful also to perform analytical estimates of the elapsed 
time until the onset of mixing and the saturated amplitude 
of the radiation field. Semi-analytical and full simulations 
results are compared, showing a good agreement. 

INTRODUCTION 

Free-electron lasers are devices that efficiently convert 
the kinetic energy of a relativistic electron beam into the 
energy of electromagnetic radiation. An electromagnetic 
wave (called laser or radiation) copropagates with the 
electron beam, which passes through a static and periodic 
magnetic field generated by a wiggler. Due the presence 
of the laser and wiggler fields, the electrons lose velocity, 
giving their energy to the laser. This single pass FEL, with 
initially cold beam, in general, is well explored in 
literature, both in Compton and Raman regimes [3-5]. 

In a FEL, there is interaction between the electrons and 
the ponderomotive well (formed through the 
superposition of the wiggler and laser electromagnetic 
fields) and among themselves. The last interaction is 
called space-charge effect. 

When the electric charge is small in the system, the 
ponderomotive well mainly drive the particle dynamics, 
and the particles are attracted to the bottom of the well. In 
this case, electric repulsion is weak, and the particles 
revolve as a whole around themselves in the particle 
phase-space. This regime is called Compton. 

But, when the charge increases, the mixing process in 
the phase-space become different (Raman regime). 
Electric repulsion offers resistance against the 
ponderomotive well, and the process is similar to the case 
of magnetically focused charged beams [1,6]. 

The main target of this work is review the paper [7] 
using more adequate parameters to FEL operation, 
establishing a threshold between Compton and Raman 
regimes. We made it through a semi-analytical approach 
based on the compressibility factor, whose zeroes indicate 
the onset of mixing in phase-space. This semi-analytical 
model can provide an estimative of the time and the 
position in the ponderomotive well for the onset of 
mixing and the saturated amplitude of the radiation field.  

PHYSICAL MODEL 

A complete description of FEL dynamics must include 
laser, electron phase and energy evolutions and space-
charge effects, which occurs due a longitudinal electric 
field. We start with the laser and wiggler (w) fields. They 
are described by the respective vector potentials (with ݁̂ = (xො + ݅	yො) √2⁄ ) 

 ݁݉ܿ ଶ Ԧࣛ௪(ݖ) = ܽ௪(݁ି௜	௞ೢ	௭ + ܿ. ܿ. )	݁̂		, (1) 

 
݁݉ܿ ଶ Ԧࣛ(ݖ) = −݅ )	௧	௭ିఠ	௜(௞݁(ݖ)ܽൣ − ܿ. ܿ. ൧ ݁̂. (2) 

The dimensionless laser amplitude ܽ(ݖ) is a slowly 
varying function of z. As for the space-charge 
contribution, to satisfy the periodic boundary conditions, 
we consider a thin electron beam moving at the center of 
the pipe. An equivalent physical picture is of a beam 
propagating along the z axis with two grounded plates 
located at ݕ = ܮ± 2⁄ . Based on a sheet beam model [8], 
Poisson equation is solved, demanding 2ߨ periodicity for 
the variable ߠ = ݇௣ݖ − where ݇௣ ,ݐ߱ = ݇ + ݇௪ is the 
ponderomotive wave number and ߠ is the particle phase 
in the ponderomotive potential. In the limit of large 
values of ܮ, the electric field generated at ߠ by one 
particle of unitary charge located at ߠᇱ can be expressed 
as the following periodic saw-tooth function, which is the 
dimensionless Green’s function for the electric field:  

,ߠ)௭ீܧ  (ᇱߠ = ߠ)݊݃݅ݏ − −ߨᇱ)ሾߠ ߠ)ݏܾܣ −  ᇱ)ሿ. (3)ߠ

Therefore, the total electric field at particle phase ߠ (where	ߟଶ = ߱௣ଶ ߱ଶ⁄ ,	and	߱௣	is	the	plasma	frequency)  
ߠ)௭ܧ  ) = ,ߠ)௭ீܧଶൻߟ  ᇱ)ൿ. (4)ߠ

From Lorentz equation, we write (where ߛ =ሾ(1 + |்ܽை்|ଶ) (1 − ⁄(௭ଶݒ ሿଵ ଶ⁄  is the relativistic Lorentz 
factor and ݒ௭ is the longitudinal velocity): 

ݖ௝݀ߛ݀  = − ܽ௪2ߛ௝ ൫ܽ݁௜ఏೕ + ܿ. ܿ. ൯ +  ௝൯. (5)ߠ௭൫ܧ௣ݒ௭௝ݒ	
 ___________________________________________  
 

*Work supported by CNPq and FAPERGS, Brazil, and by the US-
AFOSR under the grant FA9550-09-1-0283. 
#peterpeter@uol.com.br   

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-TUPWA008

TUPWA008
1410

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

2: Photon Sources and Electron Accelerators
A06 - Free Electron Lasers



It is well known maximum growth rate does occur, in 
general, for non-resonant beam velocity. Then, we can 
define a parameter that measures the difference between 
beam (ݒ௣) and ponderomotive field (ݒ௣ᇱ) velocities. This 

parameter is called detuning (ν = ൫ݒ௣ − ௣ᇱ൯ݒ ௣ൗݒ ), and it 
appears in the electron phase, which is written as 

ݖ݀ߠ݀  = ௣ᇱݒ௭ݒ − 1. (6) 

The last equation is obtained solving the wave 
equation, considering a slowly varying envelope 
approximation, for the stimulated radiation amplitude, ܽ 

ݖ݀݀  ܽ = ௪ܽ	〈௭௜ݒ〉ଶߟ ൽ݁ି௜ఏ2ߛ ඁ − 〈௭௜ݒ〉ଶߟ	݅ ർ ඀ߛ12 ܽ. (7) 

These normalized equations (5), (6) and (7) (with ݐ → ݒ ,ݐ߱ → ݒ ܿ⁄  and ݒ௣ ൎ ݇ ݇௣⁄ ) constitute a closed set 
that completely describes FEL dynamics.  

SEMI-ANALYTICAL MODEL 

Linear analysis is a proper way to understand parameter 
regions that led to instability. More than that, linear 
analysis provides stimulated radiation amplitude growth 
rate (which is almost linear until the onset of the mixing 
process). The semi-analytical model considers a linear 
wave dynamics and introduces the nonlinear particle 
dynamics by exploring the connection between particle 
phase and energy. 

Starting with linear wave dynamics, it is assumed that 
initial radiation amplitude is too small, and particle phase 
and energy, ߠ and ߛ, can be written as ߬ = ߬଴ +  .߬ߜ
Introducing this linearization in the previous equations, 
making use of the collective complex variable description 

developed [9] (using that ܺ = ൻି݁ߠߜ௜ఏ෩బൿ, ܻ = ൻି݁ߛߜ௜ఏ෩బൿ, 	ࣞ௔ = ௭ݒ߲) ߲|்ܽை்|ଶ⁄ )௭ୀ଴ and ࣞఊ = ௭ݒ߲) ⁄ଶߛ߲ )௭ୀ଴), and 
through a change in phase, necessary to satisfy initial 
equilibrium condition, we build a linear set of equations 
that describes the laser evolution.  

Considering the distribution remains acceptably 
uniform and the number of particles left of a given 
particle is almost constant until the onset of the mixing 
process, some approximations are done and Eqs. (5) and 
(6) are connected, resulting in a second order ODE for ߠ, 
which depends upon the initial particle phase ߠ଴. Deriving 
this equation with respect to ߠ଴ and defining ߲ߠ ⁄଴ߠ߲ ≡  ܥ
as the compressibility [2], we obtain 

 ݀ଶ݀ݖଶ ܥ = ௪ܽ	ܥ	݅	− ࣞఊݒ௣ 	൫ ෤ܽ	݁௜ఏ + ܿ. ܿ. ൯+ ௥ࣞఊ(1ߛଶߟ௣ݒ2 −  (8) .(ܥ

Compressibility depends on the z and ߠ଴. When ܥ → 0, 
it means that particles located in the vicinity of ߠ଴ in ݖ = 0, overtake each other at time z in the coordinate ݖ)ߠ,  ଴). So, the time and position related to the onset ofߠ
mixing process are obtained from the initial phase ߠ଴ 
which minimizes the time until ܥ → 0, and this is the 
physical meaning of the compressibility. The present 
model is not valid after the onset of mixing.  

RESULTS 

In this chapter, we briefly discuss about some results 
provided by the semi-analytical model. In Fig. 1, by 
setting ܽ௪ = ݖ)ܽ ,0.5 = 0) = −݅	ܽ௪	10ିହ and ݒ௣ = 0.99 
(these parameters are used in whole work, unless	ܽ௪ for 
Fig. 2), we look for parameters ߟ and ν that lead to 
instability and we plot curves that correspond to the 
maximum growth rate via semi-analytical model (yellow 
line) and the limit of instability (black lines). The colours 
indicate the time until the onset of mixing via full set of 
equations integration. For a fixed charge value, the 
detuning value that maximizes the growth rate is the same 
that minimizes the time elapsed until the onset of mixing. 

 
Figure 1: Map of parameter space. White regions represent 
stability (no laser field growth). Colours indicate the time 
until the onset of mixing via full particle simulation. 
Yellow line means the detuning which maximizes the 
growth rate for a specific ߟ via linear analysis. Black lines 
delimit the instability region, through linear analysis. 

The curve that maximizes the growth rate is of great 
importance in the laboratory, because it leads to a 
reduction of the wiggler length. Thus, our goal is to 
establish the threshold value of the charge (ߟ) which is 
responsible for the transition between the regimes over 
the yellow line. We set as a condition for this transition 
that if, increasing the charge value, space-charge effects 
add a full extra cycle oscillation (around the initial value, 
which is equal to 1) in compressibility evolution, then the 
regime changes to Raman. Full simulations are compared 
with model results in Fig. 2, for different ܽ௪ values, 
showing a good agreement. 
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Figure 2: Critical charge ߟ௖ for different ܽ௪ values. Filled 
squares represent full set of equations while solid line 
represents semi-analytical model results. The curve is an 
interface between Raman (above) and Compton (below) 
regions.  

A way to understand the difference between Compton 
and Raman mixing processes is to analyse the phase-
space configuration via full simulations just after the 
onset of the mixing. In Fig. 3a, in Compton regime 
ߟ) ൏  ௖), the relaxation proceeds as the particlesߟ
distribution mostly revolves as whole around itself in 
phase-space. While in Fig. 3b, where ߟ ൐  ௖ (Ramanߟ
regime), relaxation is better described in terms of jets of 
particles emanating from the core of the distribution. 

 
Figure 3: Phase-space snapshots immediately after the 
onset of mixing. Panel (a) is for Compton regime 
ߟ) = 0.002), while panel (b) is for Raman regime 
ߟ) = 0.05). 

Even though the ponderomotive well is not stationary, 
the mixing process in FEL is similar to wave-braking in 
magnetostatically confined beams. Making a comparison, 
Compton (Raman) regime bear some resemblance with 
fast (slow) wave-breaking [2]. 

 

CONCLUSION 

In the present work, a linear analysis was developed, 
providing the parameters that lead to instability and the 
laser growth rate. In addition, we applied the 
compressibility factor in free-electron lasers to build a 
semi-analytical model capable to delimit Compton and 
Raman regimes, introducing nonlinearities caused by the 
electrons distribution. Making use of this delimitation, we 
compared the phase-space of the system immediately 
after the onset of mixing for Compton and Raman 
regimes. There is a significant difference in the form 
which the mixing occurs and, certainly, the difference is 
caused due space-charge effects. 

Finally, the results given by the model were compared 
with wave-particle simulations, showing a good 
agreement. This way, we may consider compressibility a 
helpful tool to model FEL dynamics. 
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