
MODELING CRABBING DYNAMICS IN AN ELECTRON-ION
COLLIDER∗

A. Castilla1,2,3†, V. S. Morozov , T. Satogata , J. R. Delayen2 1,2 1,2
1Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, USA
2Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

3Universidad de Guanajuato (DCI-UG), Departamento de Fisica, Leon, Gto. 37150, Mexico

Abstract
A local crabbing scheme requires π/2 (mod π) horizontal

betatron phase advances from an interaction point to the
crab cavities on each side of it. However, realistic phase
advances generated by sets of quadrupoles or Final Focus-
ing Blocks (FFB), between the crab cavities located in the
expanded beam regions and the IP differ slightly from π/2.
To understand the effect of crabbing on the beam dynamics
in this case, a simple model of the optics of the Medium
Energy Electron-Ion Collider (MEIC), including local crab-
bing, was developed using linear matrices and studied over
multiple turns (1000 passes) of both electron and proton
bunches. This model was applied to determine linear-order
dynamical effects of the synchro-betatron coupling induced
by crabbing.

INTRODUCTION
It is a common practice to use linear models when initially

designing and studying machine lattices. Then, special care
needs to be taken when looking into non-linear effects in
a ring (for example), to avoid higher order resonances that
may rise undesirable dynamic conditions for the machine
operations (i. e. beam filamentation, beam breakup, etc).
Due to the high luminosity requirements imposed on the
MEIC [1], stable beam operation while using crossing an-
gle correctors [2] is of a major importance. In the present
work we have reduced the entire electron and proton storage
rings 6D dynamics to a simple linear map representation [3],
excluding the interaction region (IR) (see Fig. 1).

Figure 1: Conceptual sketch of the interaction region (blue)
connected on its extremes by a linear map of the ring (red).

Similarly, a simplified model of a symmetric IR using
linear elements in the thin lens approximation [4], such as
horizontal crab kickers, FFBs, and drifts, was implemented
for both electron and proton bunches (see Fig. 2 (a)). A
more realistic layout of the current MEIC interaction region
is described in Fig. 2 (b). We performed analytical calcula-
tions for the propagation of 6D Gaussian bunch distributions
∗ Authored by Jefferson Science Associates, LLC under U.S. DOE Contract
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(a)

(b)

Figure 2: Schematic of the symmetric IR showing the 1st
and 2nd crab cavity locations in red (C1 and C2 respectively),
the FFBs in blue, the connecting drifts, and the IP in yellow
(a). Layout of the current MEIC IR (b).

through the system for a 1000 passes as a first step to study
the linear effects on the beams due to implementation of
zero-length linear crabbing kicks to account for a 50 mrad
total crossing angle. The parameters for the used Gaussian
distributions are listed in Table 1.

Table 1: Parameters Used for the Particle’s Distributions

Parameter Electrons Protons Units
Energy 5 60 GeV
Number of particles 105 105 –
εN,x 54 0.35 µm
εN,y 11 0.07 µm
σ∆p/p 7.1 3.0 ×10−4
σz 0.75 1 cm

RELATIVE PHASE ADVANCE
The relative phase advance (∆ψx,12) constriction for the

crab cavitites, in a local scheme, states that the bunch should
complete an integer number of betatron half oscillations
between the crab cavity locations (corresponding to C1 and
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C2 for the present work, see Fig. 2) to ensure a complete
cancelation of the transverse kick imprinted across the bunch
by the crab cavities. Any difference from nπ in this relative
phase advance will cause mismatched conditions on the
beams for the ring’s optics and will contribute to other effects
caused by errors on the crab cavities’ voltages, rf phase noise,
and particles’ time of flight errors, among others.
In the present work we ignored any effects induced by

voltage, phase noise, and time of flight errors by using a
linear “delta-like” kick at C1 and C2 that would produce
the desired crabbed angle at IP, independently of the parti-
cles momentum. This linear kick will only acount for the
individual particle’s longitudinal and horizontal positions
with respect to the centroid of the bunch. The corresponding
transfer matrix is shown in Eqn. 1.

MCrab =

*.........
,

1 0 0 0 0 0

0 1 0 0
Vc tan

(
θc
2

)
D 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Vc tan
(
θc
2

)
D 0 0 0 0 1

+/////////
-

, (1)

where Vc is the crabbing voltage, θc the total crossing angle
(50 mrad in this case), and D is the length of the drift placed
between the crab cavity location and the IP (see Fig. 2 (a)).

Once the total transfer matrix for the IR is calculated by di-
rect multiplication of all the individual matrices in the proper
order, we can compare its m12 element (for the horizontal
degrees of freedom) to the m12 element of the same trans-
fer matrix, but constructed by the standard Courant-Snyder
parameterization [4], finding that:

m12 = 2D

=

√
βC1
x βC2

x sin
(
∆ψx,12

)
, (2)

where βC1
x and βC2

x are the horizontal β values at the first
and second crab cavity locations, respectively, while D refers
to the drifts’ length as indicated in Fig. 2(a). The only way
that this relation accounts for an exact value of ∆ψx,12 = nπ,

is for
√
βC1
x βC2

x → ∞. Therefore, these relative phase
advance differences are reduced as the length of the drifts is
reduced or the

√
βx values are increased at the crab cavities’

location. Calculations performed, using the lattice design
for the MEIC proton storage ring [5], show a relative phase
advance difference of ∼ 1% with respect to π.

PROPAGATION OF THE DISTRIBUTIONS
A simple recurrent loop was implemented, usingWolfram

Mathematica®, to propagate the 6D distributions described
in Table 1 through the proper matrices’ sequence. Special
care was taken to store the evolution at several locations
within the IP for each turn to account for the evolution of
different effects. Figure 3 (a) shows the electron bunch distri-
bution at the IR for the uncrabbed initial distribution (blue),
the distribution after 1000 turns without implementing the

crabbing correctors (orange), and finally the bunch after a
1000 turns with local crabbing on (green). Also, Fig. 3 (b)
shows the calculated crabbed angle per turn, for the proton
bunch with the crabbing correctors turned off (blue) and,
when the local crabbing correction is turned on (orange).

(a)

(b)

Figure 3: Electron bunch at the IP (a), for the initial condition
(blue), after 1000 turns without crabbing (orange), and after
1000 turns with crabbing (green). The calculated proton
crabbed angle at IP (b) without crabbing (blue) and with
crabbing (orange).

The noticeable periodicity of the effective crabbed an-
gle is consistent with synchrotron and betatron oscillations,
induced by a mismatching given by the phase advance differ-
ences with respect to π between the crabs. A more detailed
analysis of this effect will be presented in the following
section of this paper.

Figure 4 (a) shows the electrons distribution at the C1
location, for the initial condition (blue), after 1000 turns
with the crabbing correctors off (orange), and after 1000
turns when the crabbing correctors are turned on (green).
While, Fig. 4 (b) shows the same for the proton distribution
at the C2 location, as a comparison of the similar effects
induced by the phase advance differences with respect to
π on the bunch orientations for both electrons and protons.
These effects do not show indications of resonances that
consistently increase the beam sizes, at least at the linear
order and for the small number of turns used in this work to
track the distributions, but they do produce synchro-betatron
coupled oscilations due to the induced beam mismatch.
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(a)

(b)

Figure 4: Snapshot of the electron (a) and proton (b) distri-
butions for the initial conditions (blue), after 1000 turns with
no crabbing (orange), and after 1000 turns with the crabbing
correctors turned on.

SYNCHRO-BETATRON COUPLING
The “snapshots” of the bunch distributions presented

above (Fig. 4) show the initial and final conditions after
1000 turns for the mentioned cases. However, we calculated
the beamsizes turn by turn at different locations and noticed
the correspondent betatron oscillations, when the crabbing
correctors are turned off, while for the case, when the crab-
bing correctors are turned on, synchro-betatron coupling can
be observed. The fractional tunes of the whole system are:
νx = 0.73, νy = 0.32, and νz = 0.01. A Fourier analysis of
the beam size oscillations is presented in Fig. 5 as a function
of the tune fraction, since the tunes used in the linear maps
for both the electron and proton rings were the same, the
Fourier analysis for each case gives the same result with
only slight differences in the amplitudes of the peaks, and
for this reason we do not distinguish the results for electrons
or protons (see Figs. 5 (a) and (b)).

CONCLUSIONS
The analytical linear models for both proton and electron

storage rings with simplified symmetric IRs, described in
the present work, were used to compare the beam dynamics
in an Electron-Ion collider for the cases when perfect crab-
bing correctors are set to restore geometrical degradation
of the luminosity due to a 50 mrad total crossing angle at
the IP. We identified an intrinsic difference of the relative
horizontal phase advance (from π) between the crab cavities,

(a)

(b)

Figure 5: Fourier analysis of the beams’ horizontal (a) and
vertical (b) β-functions, for the case when the crabbing
correctors are turned off (blue), and when they are turned
on (orange).

which depends on the IR’s optics and the physical distance
between the crab cavities, for the linear case. Despite this
difference being small, it can induce synchro-betatron cou-
pling, showing 2 new sidebands (νx ± νz ) in the horizontal
betatron motion spectrum. These effects do not give indi-
cations of resonances or emittance dilution for the range of
turns studied in this work. Further studies of this effects at
a linear level for longer number of turns are recommended
to ensure stable operation conditions for the beams and to
identify possible resonances.
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