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Abstract

The International Muon Ionization Cooling Experiment

(MICE) [1] is an experiment to demonstrate ionization cool-

ing of a muon beam in a beamline that shares characteristics

with one that might be used for a muon collider or neutrino

factory. I describe a way to quantify cooling performance

by examining the phase space density of muons, and de-

termining how much that density increases. This contrasts

with the more common methods that rely on the covariance

matrix and compute emittances from that. I discuss why a

direct measure of phase space density might be preferable

to a covariance matrix method. I apply this technique to an

early proposal for the MICE final step beamline. I discuss

how matching impacts the measured performance.

INTRODUCTION

The analysis of the MICE particle trajectories must pro-

vide a numerical measure of the cooling performance, and

must ensure that this performance measure is unbiased. To

provide an example of a potential difficulty, I first examine

two possible measures of cooling performance; the first is

an increase in the phase space density

Nf ǫ6i/(Niǫ6 f ) (1)

where the i subscripts refer to the initial distribution, the f

subscripts to the final distribution, N refers to the number

of particles, and ǫ6 refers to the 6-D phase space emittance,

defined to be the square root of the determinant of the 6-D

second moment matrix. A different measure could be the

luminosity increase:

N2
f

√
ǫ6i/(N2

i

√
ǫ6 f ) (2)

This is generally a stronger condition than the increase in

phase space density, but may be a more appropriate measure

for a muon collider as it measures the eventual increase

luminosity one might expect (though there are arguments

for a different contribution from the longitudinal emittance).

I use an early version [2] of the MICE final step lattice.

The design parameters are given in Tables 1–3. There are

two 201.25 MHz cavities with a gradient of 16 MV/m, a

length of 434.62 mm, centered at ±281.81 mm. The beam

distribution will always be launched from −4050 mm and
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Table 1: Solenoid coil geometry and currents [2] used in my

simulations. Only the upstream half of the coils are listed;

the downstream half is reflected about longitudinal position

0 and has opposite currents.

Long. Inner Outer

Center Length Radius Radius Current

(mm) (mm) (mm) (mm) (A/mm2)

−4800.00 110.60 258.0 325.8 135.18

−4050.00 1314.30 258.0 280.1 152.44

−3300.00 110.60 258.0 318.9 127.37

−2900.00 199.50 258.0 288.9 113.12

−2461.00 201.30 258.0 304.2 123.04

−1202.75 213.30 267.0 361.8 40.00

−797.25 213.30 267.0 361.8 40.00

Table 2: Apertures [2] used in my simulation. Only the

apertures upstream of the center are listed; the downstream

apertures are identical.

Center Length Radius

(mm) (mm) (mm)

−3592 2664 200

−1000 844 210

0 65 600

analyzed at +4050 mm. The beam has a total momentum

of 200 MeV/c, and I only consider transverse dimensions.

Simulations are performed using ICOOL [3].

To illustrate the potential difficulties I perform a simple

simulation: I launch a beam with a Gaussian distribution in

transverse phase space, matched to the 4.14565 T solenoid

field at the launch point, including its angular momentum,

with a given normalized emittance. I then compute the

normalized emittance at the end using

√

σxxσpx px
σyyσpy py

− σxpx
σypy

− L2/4 (3)

L = σxpy
− σypx

(4)

where σi j are the corresponding elements of the second

order moment matrix. I then use Eq. (1) to compute the

increase in phase space density. Figures 1 and 2 show the

results. Whether one sees cooling or not depends on the

choice of the initial emittance, and there is no clear reason

to choose one emittance over another. For small emittances,
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Table 3: Materials intercepting the beam [2] in my simula-

tion. Only the materials upstream of the center are listed;

the downstream materials are identical. The lithium in LiH

is almost exclusively Li6.

Material Center Length

(mm) (mm)

Be −499.31 0.38

Be −64.31 0.38

LiH 0 65
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Figure 1: Ratio of final phase space density to initial phase

space density [Eq. (1)], and the same for luminosity [Eq. (2)],

as a function of the initial normalized transverse emittance.

multiple scattering in the absorber causes the emittance to

grow more rapidly than the emittance is decreased by the

average energy loss. For large emittances, the tails of the

distribution are truncated on the apertures, giving the false

appearance of a very large phase space density increase.

If instead one uses Eq. (2) as a measure, one finds a clear

optimum, but it does not show an increase in that measure

(the experiment is not designed to increase this measure).

The weakness here is the use of the second order moment

matrix as a measure of the phase space density, and the

limited focusing and cooling potential of the lattice. I will
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Figure 2: Detail of Fig. 1.
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Figure 3: Particle count in histogram bins relative to what

would be expected for a linear system with no cooling. Hor-

izontal axis corresponds to (Jx + Jy )/J. 262144 particles

were launched with J = 1.0 meV s. Runs are with either no

absorbers, only the average energy loss included, or a full

simulation with energy loss, energy straggling, and multiple

scattering included.
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Figure 4: As for Fig. 3, but for J = 9.2 meV s.

demonstrate that the lattice increases phase space density by

directly looking at the phase space density itself.

PHASE SPACE DENSITY

I launch an initial distribution with a uniform density in the

4-dimensional transverse phase space, then count particles

at the end in bins which have a fixed volume in phase space.

The number of particles in a bin, divided by the phase space

volume of the bin, divided by the initial phase space density,

gives the increase ratio in phase space density.

I have not worked out a number of details of the practical

implementation of this. It is in principle possible to achieve

a uniform phase space density to some accuracy by an initial

blind particle selection; an algorithm must be worked out to

do so. An uncertainty analysis is necessary to determine the

statistical significance of the particle counts within the bins.

This paper will only illustrate the concept of the technique.

I launch a distribution of particles uniformly distributed

in transverse phase space by distributing particles uniformly

in a triangle in action space defined by Jx ≥ 0, Jy ≥ 0,

Jx + Jy < J, and angle space 0 ≤ Φx,y < 2π. These are
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Figure 5: Figure 3, after optimizing the transformation to

Jx + Jy .

converted into initial coordinates via

x =

√

4Jx

e|Bs |
cosΦx y =

√

4Jy

e|Bs |
cosΦy (5)

px = −
√

e|Bs |Jx sinΦx +
eBs

2
y (6)

py = −
√

e|Bs |Jy sinΦy −
eBs

2
x (7)

with Bs = 4.14565 T. Note that the momenta here are

kinetic momenta.

I compute Jx + Jy for each particle using

Jx + Jy =
e|Bs |

4
(x2
+ y

2)

+

1

e|Bs |



(

px −
eBs

2
y

)2

+

(

py +
eBs

2
x

)2
(8)

where in this case Bs is −4.14565 T, the field at 4.05 m. The

particles are then assigned to a histogram bin by computing


n

(

Jx + Jy

J

)2
(9)

This assignment gives each bin the same phase space vol-

ume. If the system were perfectly linear with no cooling,

only first n bins would be filled, and they would, on average,

all contain the same number of particles. For the real system,

more than n bins could be filled. If there are N total particles

launched, a bin having more than N/n particles, by a statis-

tically significant amount, indicates that phase space density

was increased. The result of this analysis is shown in Figs. 3

and 4. Without absorbers, the final distribution is close to

having all n bins filled with N/n particles, except near bin

n, where nonlinearity causes deviation from that, more for

a large emittance distribution than a small emittance distri-

bution. When absorbers are included, one sees an excess

of particles in the low amplitude bins, giving the expected

cooling behavior. Furthermore, when stochastic effects are

included, there is a gain in only the lowest amplitude bins, a

reduction in higher amplitude bins, and a significant number
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Figure 6: Figure 5, but for J = 9.2 meV s.

of particles in bins for Jx + Jy > J. This effect is more

pronounced when J is small. This is the expected effect

from multiple scattering, since the amount of scattering is

independent of the particle amplitude. What is unexpected,

however, is that when stochastic effects are turned off but

energy loss in absorbers is included, there are still particles

for Jx + Jy well beyond J, and a corresponding reduction

in the number of particles for Jx + Jy below J.

This latter effect arises from a betatron mismatch gener-

ated by the absorber. I address this by allowing a general

cylindrically symmetric transformation to action variables:

Jx + Jy =
e|Bs1 |

4
(x2
+ y

2)

+

1

e|Bs1 |

{ [
px −

e

2
(Bs0y + |Bs1 |αx)

]2

+

[
py +

e

2
(Bs0x − |Bs1 |αy)

]2
}

(10)

where Bs0, Bs1, and α are chosen to maximize the number of

particles with Jx + Jy < J. The results are shown in Figs. 5

and 6. The results without stochastic effects are as expected

for the J = 1.0 meV s distribution, and are improved but not

completely satisfactory for the J = 9.2 meV s distribution.

The results including stochastic effects are also improved, in

that for the same set of particles, there are more histogram

bins showing a phase space density increase. Choosing a

better criterion for matching may improve the results for

large emittance distributions; as evidence of this, the results

appeared to be better when I fixed α = 0.
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