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Abstract 
Terahertz frequency radiation (0.1-10 THz) is a 
promising tool for a number of scientific and practical 
applications. One promising scheme to obtain powerful 
and efficient THz emission is usage of beam-driven 
dielectric loaded structures [1]. Recently we have 
considered the problem where the microbunched 
ultrarelativistic charge exits the open end of a cylindrical 
waveguide with a dielectric layer and produces THz 
waves in a form of Cherenkov radiation [2]. To 
investigate the applicability of utilized approximations, 
we analyze here the case of orthogonal end of a 
waveguide with continuous filling. However, presented 
rigorous approach can be generalized for waveguide with 
vacuum channel. We use the combination of Wiener-
Hopf technique and tailoring technique. The infinite 
linear system for magnitudes of reflected waveguide 
modes is obtained and solved numerically. We present 
typical field distributions over the aperture and typical 
radiation patterns in the Fraunhofer zone.  

THEORY AND ANALYTICAL RESULTS 
Convenient rigorous method for investigation of 

radiation from open-ended plane dielectrically loaded 
waveguides has been developed several decades ago [3]. 
Here we generalize this approach for the case of 
cylindrical geometry. At the current stage, we consider in 
detail the case of continuous filling, which is relatively 
simple. In the sequel, we plan to apply the developed 
technique for layered waveguide.  

Consider a semi-infinite cylindrical waveguide with 
radius a  filled with a dielectric ( 1  ) (Fig. 1). We 
suppose that single 0lTM  waveguide mode incidents the 

orthogonal open end (cylindrical frame , , z   is used): 
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0 /k c . The reflected field in the area 0z  , 

2 2x y a    is decomposed into a series of 

waveguide modes propagating in opposite direction: 
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where mN  are unknown “reflection coefficients” that 

should be determined. The vacuum area is divided into 
two subareas (1) and (2) (see Fig. 1), where the field is 
described by Helmholtz equation: 
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We introduce functions ( , )   (hereafter subscripts 

  mean that function is holomorphic and have no zeros 
for  Im 0   and Im 0  , correspondingly): 
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From (4) we obtain 
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where 2 2
0k   , Im 0  . Function (1)F  is 

determined using continuity of ~ zE E z      and 

jump of zE  at 0z  , in the issue we obtain: 
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where 1,2C  are unknown coefficients. Utilizing 0zE   

for a  , 0z   and continuity of zE  and 
2 2 2

0~ ( )zE z k H       for a  , 0z  , we 

obtain the following relation 
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and Wiener-Hopf equation for (2) ( , )a  : 

Figure 1: Geometry of the problem. 
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where (1)
0 0( ) ( ) ( )G a J a H a     . Since the right-hand 

side of (11) should be holomorphic for Im 0  , 
including points 0( / )p pj a     (note that 

0 ( ( )) 0pJ a   ), we get for 1, 2,...p  : 
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where lp  is the Kronecker symbol. Equation (12) is 

solved in a common way: 
(2) 12 ( , ) ( ) ( )i a G T P   
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where factorization G G G  ,      and 

subsequent decomposition 
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is performed using standard formulas [4]. Unknown 
polynomial function ( )P   is determined using Meixner 

edge condition [3,4]. Since for | |  , Im 0   
(2) 1( , ) ( ) ~a G    
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where 1 1sin [( 1) / (2 2)]       , therefore one 

should put 0( ) ( )P const T k    . Calculating 
(2) ( , )pa   and substituting it into (13), we obtain the 

linear system for mN : 
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It can be shown that for 1   this system is analytically 
solved and the solution coincides with known result for 
vacuum waveguide [5]. For 1   system (17) can be 
solved numerically using the reduction technique. 

NUMERICAL RESULTS 
For the case of 1  , we solve (17) by reducing it to 

the finite system of maxN  equations, where maxN  was 

chosen around two times as much as the total number of 
propagating modes in the waveguide at given frequency. 
After mN  are found, we can determine the total field for 

a  , 0z   . Then, using continuity of E  and H , 

we determine the tangential field at the outer surface of 
the aperture ( a  , 0z   ). Figure 2 shows the 

behaviour of the exact H  field component over the 

outer surface of aperture (solid line). The mode frequency 
was chosen to be equal to the frequency of mode of 
Cherenkov radiation with number 20m   produced by a 

charge moving with relative velocity 21     (   is 

Lorentz factor) in regular waveguide [2, 6]: 

 2
0 1m mc j a    .                  (20) 

We also show here the behaviour of this field component 
calculated via approximate technique used in [2] for 
dielectric aperture (dashed line). Recall, that in 
accordance with this technique, we approximately 
decompose a waveguide mode into two quasi plane waves 
and describe the refraction of each wave through the 
interface using formalism of Fresnel coefficients. One can 
see that for these curves maxima and minima are well 
correlated. Certain improvement in field magnitude is 
required for small area near 0   and a   (edge).  
 

Figure 2: The behaviour of H  component over the 

waveguide aperture a  , 0z   . Solid (red) line is 

calculated using solution of (17), dashed (blue) line is 
calculated using approximate technique from [2]. Mode 
frequency is 20 2 412 GHz   , 0.24 cma  , 10  , 

7  . Waveguide supports 21 propagating modes. 
 

Since the tangential field for a  , 0z    is known, 

it is convenient to utilize the Stratton-Chu formulas [2] to 
calculate the field in the far-field (Fraunhofer) zone 
(spherical frame R ,  ,   associated with cylindrical 

frame  ,  , z  is utilized). The far field zone is 

determined by inequalities: 

01/R k ,   R a ,   2 /R a    ( 02 / k  ).  (21) 

Figure 3 shows typical radiation patterns in the 
Fraunhofer zone (21). Here the mode frequency was 
chosen to be equal to the frequency of l -th Cherenkov 
mode (20). For 10   and 7   waveguide supports l  

propagating modes. The low number modes ( 1, 2l  ) 

provide maximum radiation in orthogonal direction 

( 90  ) and radiation patterns possess weak directivity. 
With an increase in mode number, orthogonal radiation 
disappears, the directivity of radiation pattern increases, 
radiation mostly goes in forward direction and angle of 

pattern maxima decreases (it is around 30  for 5-th mode 

and 15  for 10-th mode).  

0

Re H

10l 5l 

0.1 0.1 (cm)0.2 0
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Figure 3: Radiation patterns (normalized | |E  versus  ) in the Fraunhofer zone (21) produced by 0lTM  mode at the 

open end of dielectrically loaded waveguide with 0.24cma  . Frequency   (shown near each pattern) is chosen to be 

equal to the frequency of l -th mode of Cherenkov radiation (20) produced by the charge with Lorentz factor  . 

 
 
The cases 2  , 7   and 10  , 1.06   are 

similar to each other by differ slightly from the case of 
10  , 7  . The mode with number 1l   gives the 

essential radiation in orthogonal direction, but pattern 

maximum is at approximately 45  . With an increase in 
mode number, the angle of main lobe increases. The 10-th 
mode produces two narrow main lobes at approximately 

70   and a number of weak secondary lobes. The 
presence of secondary lobes is connected with the fact 
that waveguide supports a lot of propagating modes (14 
for 2  , 7   and 32 for 10  , 1.06  ). 

In conclusion, we note that earlier we analyzed 
radiation from the open end of waveguide with a 
dielectric layer and a vacuum channel [2] where certain 
approximate analytical approaches applicable for modes 
with large numbers only were utilized. Now we will 

investigate this problem using the rigorous approach 
described above.  
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