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Requirements for BLM network on machine faults can be categorized 
to two functions: fault detection and fault diagnosis. 

 The fault detection function requires BLMs:
• With fast response for big losses

• Located around sensitive components to protect them

• Located at “critical positions” to trigger MPS for fault modes 

 The fault diagnosis function requires BLMs:
• Sensitive enough to diagnose issues with beam tuning and slow losses

• Able to differentiate between controlled and uncontrolled losses

• Located at “discrimination points” to differentiate spatial loss patterns 

Requirement for Beam Loss Monitor Systems
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 Find minimum # of BLMs required to trigger MPS for all fault modes, 
i.e. “Critical Positions”  
• Correlation Analysis between loss locations

 Find “Discrimination Points” to differentiate loss patterns from 
different error sources
• De-correlation Analysis; Pattern Recognition

Examples of implementation:
• Single cavity failure mode at FRIB

• Single solenoid failure mode at FRIB

Goal of BLM Network Optimization
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 In FRIB lattice, there are 572 “accelerator elements”, which can be considered 
as loss observation points in the simulation

 FRIB has 332 cavities, within which 241 failures result in beam losses. The 
resulted single-cavity-failure loss matrix is 572×241

 FRIB has 69 solenoids, and the resulted single-failure loss matrix is 572×69

Example Data of Simulated Loss Distribution
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 The ensemble of “critical positions” (CP) satisfies the following:

• For every fault mode, the resulted loss can be detected by a small set of 
detectors at the “critical positions”

• Need to quantify correlations between monitors for classes of events

Spatial Optimization for BLM Network
─ Part 1
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Looking for “critical positions” for each fault mode

Z. Liu, TUAC3, IPAC 2015



 Correlation coefficient matrix Rn×n for matrix Xm×n is defined as 

𝑅 𝑖, 𝑗 =
𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)

𝜎(𝑋𝑖)∙𝜎(𝑋𝑗)

where 𝑅 𝑖, 𝑗 is the correlation coefficient of the ith column and jth column.       
Usually, 

 For loss detection, we consider positions with positive strong correlation, e.g., 
≥ 0.45, as a group 

Correlation Coefficient Matrix
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Correlation Negative Positive

None -0.09 to 0.0 0.0 to 0.09

Weak -0.3 to -0.1 0.1 to 0.3

Medium -0.5 to -0.3 0.3 to 0.5

Strong -1.0 to -0.5 0.5 to 1.0
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Group Loss Points for Cavity-Failure Mode
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 Zero out loss signals below MPS fast-trip threshold (defined as 10 W)

Calculate position correlation matrix R572×572 for transposed loss matrix 
X241×572

Exclude correlations less than 0.45 for better contrast
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Check if the CP Ensemble Covers All Events
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 In the raw loss matrix X572×241, 
sum over each row (i.e. failure 
events) and sort the loss points in 
descending order of total loss, i.e., 
(Xtot)572×1

 Starting with the largest loss, pick 
one CP in each correlated group, 
and a few CPs outside groups, i.e. 
[442, 564, …, 247, …, 327, …, 57, 
…,158, …, 26]

 Check if all 241 events are 
covered and add more CPs if 
needed

All 241 failure 

events are detected
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 The final goal is to construct
• P(error-loss) ─ probability of error source, given an observed loss 

distribution

 Feature analysis as a theory of pattern recognition:
• Recognition of significant features (discrimination points) rather than 

reading an exact template, for each fault mode

• Contrasts/differentiates between failure events with distinctive features 

Spatial Optimization for BLM Network
─ Part 2
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Looking for “discrimination points” for each fault mode
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Principal Component Analysis
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 We introduce Principal Component Analysis (PCA) to find significant features
for a fault mode and distinctive features to differentiate between failure events  

 PCA is mathematically defined as an orthogonal linear transformation, 𝑡𝑘(𝑖) =
𝑋(𝑖) ∙ 𝑤(𝑘) in such way that the individual variables of 𝑡 successively inherit the 

maximum possible variance from 𝑋, with each loading vector 𝑤 constrained to 
be a unit vector

Example:
Each point could 

represent the loss 

at location x and 

y for a given 

failure event

Original data set Output after PCA
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 PCA is good at dimensionality reduction (e.g. image compression)

 In this example, 97% of the variance in the data is accounted for by the first 
principal component, ~99% in total by the 1st and 2nd PCs.

 A dramatic reduction in analysis dimensionality from 572 to 1 or 2! The cavity 
failure events/patterns will achieve maximum variation on PC1.

PCA Analysis for Single-Cavity-Failure Mode
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 The score plot suggests potential clusters 
forming on the PC1. The more distance 
between points (e.g. failure events), the 
easier to distinguish them on PC1.

Extract Significant Features for Single-Cavity-
Failure Mode
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 The loading plot shows that 3 loss 
locations account for major difference 
between cavity failure events. These are 
significant features for the cavity fault 
mode, or “discrimination points” where 
BLMs should be placed.

To further distinguish these events, 

exclude the significant features and 

re-do PCA for more distinct 

features. Repeat until most 

patterns are distinguishable.
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Pattern Distinction in Significant Feature 
Space
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To further distinguish 

these points (e.g. failure 

events), we need to 

exclude the significant 

features from the raw 

data and re-do the 

PCA. Repeat this to get 

distinctive features for 

most patterns.

A sample loss measurement 

with errors dominated by a 

certain cavity failure
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 The “significant features” seem to be dipole 18, quad 102, cavity 121 &127

 Dipole 18 is very close (~ 1 meter) to the 11th multipole, from the perspective 
of radiation detection. Therefore they can be considered as an overlapped 
feature for radiation signals.    

Extract Significant Features for Single-
Solenoid-Failure Mode
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We defined the spatial optimization goals for BLM network
• Located at “critical positions” for fault modes

• Located at “discrimination points” for loss pattern recognition

We demonstrated how to locate “critical positions” for single-cavity-
failure mode, by computing and grouping the correlation coefficient of 
loss positions

We demonstrated how to use PCA to extract significant features for 
fault modes (e.g. cavity-failure mode and solenoid-failure mode) 

 If the observed loss patterns were in conformance with knowledge 
base, then the projections in the feature space would provide a 
probability for dominated error source (e.g. slide 12)

Conclusion
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 Fault diagnosis methodology

 The fault diagnosis methodology should work when:
• The loss pattern is dominated by one or two error sources (e.g. most Fast Protection 

System triggered losses) 

• The loss pattern has distinctive features

Fault Diagnosis for Accelerators
– Path Forward
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 To further allocate “distrimination loss points”, those 3 variables shall be 
excluded and a second PCA analysis needs to be performed on the rest of 
variables.

 The “critical loss points” from this step can be concluded as: 21st & 22nd & 23rd

Halo Monitor Ring (HSR) and half of the cryomodule downstream of them 
respectively, as well as 31st & 32nd HMR.

Repeat PCA Analysis for Cavity-Failure Mode
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 After one extra iteration to filter out HSR 
38 and 39 as critical point, the critical 
point is not as obvious as before, and we 
can end there for cavity failure analysis. 

 There are other fault modes that need to 
be analyzed respectively in the same 
way, such as solenoid failure.

3 Iterations of PCA Analysis for Cavity-Failure
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 FRIB has 69 solenoids. The loss distribution matrix correspondingly is 
572×69. 

 We implemented two iterations of PCA analysis and mark the critical points 
from solenoid failure mode (green) together with cavity failure mode (orange).

A More Broad Feature Space Including 
Solenoid-Failure Mode
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