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Requirement for Beam Loss Monitor Systems

» Requirements for BLM network on machine faults can be categorized
to two functions: fault detection and fault diagnosis.

* The fault detection function requires BLMSs:
» With fast response for big losses
L ocated around sensitive components to protect them
 Located at “critical positions” to trigger MPS for fault modes

* The fault diagnosis function requires BLMSs:
 Sensitive enough to diagnose issues with beam tuning and slow losses
 Able to differentiate between controlled and uncontrolled losses
» Located at “discrimination points” to differentiate spatial loss patterns
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Goal of BLM Network Optimization

* Find minimum # of BLMSs required to trigger MPS for all fault modes,
i.e. “Critical Positions”
 Correlation Analysis between loss locations

* Find “Discrimination Points” to differentiate loss patterns from
different error sources
» De-correlation Analysis; Pattern Recognition

= Examples of implementation:
« Single cavity failure mode at FRIB
« Single solenoid failure mode at FRIB
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Example Data of Simulated Loss Distribution

= |n FRIB lattice, there are 572 “accelerator elements”, which can be considered
as loss observation points in the simulation

= FRIB has 332 cavities, within which 241 failures result in beam losses. The
resulted single-cavity-failure loss matrix is 572 X 241

* FRIB has 69 solenoids, and the resulted single-failure loss matrix is 572 X 69
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Spatial Optimization for BLM Network
— Part 1

Looking for “critical positions” for each fault mode

» The ensemble of “critical positions” (CP) satisfies the following:

* For every fault mode, the resulted loss can be detected by a small set of
detectors at the “critical positions”

* Need to quantify correlations between monitors for classes of events
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Correlation Coefficient Matrix

= Correlation coefficient matrix R, ., for matrix X, ., is defined as

CoN COU(Xi,Xj)
RGJ) = Sonem)

where R(i,j) is the correlation coefficient of the it column and j*" column.
Usually,

Correlation  Negative Positive
None -0.09t0 0.0 0.0 to 0.09
Weak -0.3t0-0.1 0.1t00.3
Medium -0.5t0-0.3 0.3t00.5
Strong -1.0to -0.5 0.5t01.0

» For loss detection, we consider positions with positive strong correlation, e.g.,
= 0.45, as a group
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Group Loss Points for Cavity-Failure Mode

= Zero out loss signals below MPS fast-trip threshold (defined as 10 W)

= Calculate position correlation matrix Re-, =7, fOr transposed loss matrix
X241><572
= Exclude correlations less than 0.45 for better contrast

Correlation Coefficient between Loss Positions after Filtering
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Check iIf the CP Ensemble Covers All Events
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= In the raw loss matrix Xc-, 241
sum over each row (i.e. failure
events) and sort the loss points in
descending order of total loss, i.e.,

(Xtot)572 x1

= Starting with the largest loss, pick
one CP in each correlated group,
and a few CPs outside groups, I.e.
[442, 564, ..., 247, ..., 327, ..., 57,
...,188, ..., 20]

= Check if all 241 events are
covered and add more CPs if
needed
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Spatial Optimization for BLM Network
— Part 2

Looking for “discrimination points” for each fault mode

* The final goal is to construct

* P(error-loss) — probability of error source, given an observed loss
distribution

» Feature analysis as a theory of pattern recognition:

» Recognition of significant features (discrimination points) rather than
reading an exact template, for each fault mode

» Contrasts/differentiates between failure events with distinctive features
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Principal Component Analysis

= We introduce Principal Component Analysis (PCA) to find significant features
for a fault mode and distinctive features to differentiate between failure events

= PCA Is mathematically defined as an orthogonal linear transformation, t; ;) =
Xy * Wiy In such way that the individual variables of ¢ successively inherit the
maximum possible variance from X, with each loading vector w constrained to
be a unit vector

¢« Output after PCA
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PCA Analysis for Single-Cavity-Failure Mode

= PCA is good at dimensionality reduction (e.g. image compression)

= |[n this example, 97% of the variance in the data is accounted for by the first
principal component, ~99% in total by the 1st and 2" PCs.

= A dramatic reduction in analysis dimensionality from 572 to 1 or 2! The cavity
failure events/patterns will achieve maximum variation on PC1.
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Extract Significant Features for Single-Cavity-

Faillure Mode

Failure events project onto PC1

)
To further distinguish these events,
exclude the significant features and

re-do PCA for more distinct ‘i/@ REEECREE
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patterns are distinguishable.
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Pattern Distinction in Significant Feature
Space

«10* Cavity failure events in the significant feature space
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Extract Significant Features for Single-
Solenoid-Failure Mode
» The “significant features” seem to be dipole 18, quad 102, cavity 121 &127

= Dipole 18 is very close (~ 1 meter) to the 11t multipole, from the perspective
of radiation detection. Therefore they can be considered as an overlapped
feature for radiation signals.
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Conclusion

* \We defined the spatial optimization goals for BLM network
 Located at “critical positions” for fault modes
 Located at “discrimination points” for loss pattern recognition

* \We demonstrated how to locate “critical positions” for single-cavity-
failure mode, by computing and grouping the correlation coefficient of
loss positions

» \We demonstrated how to use PCA to extract significant features for
fault modes (e.g. cavity-failure mode and solenoid-failure mode)

= |f the observed loss patterns were in conformance with knowledge
base, then the projections in the feature space would provide a
probability for dominated error source (e.g. slide 12)
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Fault Diagnosis for Accelerators
— Path Forward

» Fault diagnosis methodology

Knowledge /
Pattern Base

~

Benchmarked fault modes

Case-based BLM measurements

\ reasoning
( 2\
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Engine (e.0. | assification > : »
Warehouse | gPCA() g ) L ) . Matching Not agree™ Decision
A No

Benchmarked loss simulation: Simulated fault modes need to be benchmarked by BLM measurements during commissioning

* The fault diagnosis methodology should work when:

* The loss pattern is dominated by one or two error sources (e.g. most Fast Protection
System triggered losses)

* The loss pattern has distinctive features
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Repeat PCA Analysis for Cavity-Failure Mode

= To further allocate “distrimination loss points”, those 3 variables shall be
excluded and a second PCA analysis needs to be performed on the rest of

variables.

= The “critical loss points” from this step can be concluded as: 21st & 22"d & 23rd
Halo Monitor Ring (HSR) and half of the cryomodule downstream of them

respectively, as well as 315t & 32"d HMR.
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3 Iterations of PCA Analysis for Cavity-Failure

= After one extra iteration to filter out HSR
38 and 39 as critical point, the critical

0.6 -

point is not as obvious as before, and we
can end there for cavity failure analysis. 5 °*
L o0z
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A More Broad Feature Space Including
Solenoid-Failure Mode

* FRIB has 69 solenoids. The loss distribution matrix correspondingly is
572 X 69.

= We implemented two iterations of PCA analysis and mark the critical points
from solenoid failure mode (green) together with cavity failure mode (orange).
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