

ID: TUBC1

Recent Progress and Operational Status of the Compact ERL at KEK

Shogo Sakanaka (KEK), cERL team (see next page)

IPAC'15, Richmond, VA, USA, May 3-8, 2015.

Authors

High Energy Accelerator Research Organization (KEK)

M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D. Arakawa, S. Araki, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, O. Tanaka, T. Takenaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida

Japan Atomic Energy Agency (JAEA)

R. Hajima, S. Matsuba, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma

Hiroshima University

M. Kuriki, Y. Seimiya [on leave]

The Graduate University for Advanced Studies (Sokendai)

E. Cenni [on leave]

Future Plan: ERL Light Source Project at KEK

Staged plan:

- 3-GeV ERL as synchrotron light source
- ② 6-7 GeV XFEL Oscillator (XFEL-O)

RF frequency: 1.3 GHz

Beam current: 10-100 mA

Bunch charge: 7.7-77 pC

Normalized emittance: 0.1-1 mm·mrad

The Compact ERL (cERL)

Injector cryomodule

Photocathode DC gun

In operation Design Beam energy E 35 MeV 20 MeV Injector energy Eini 5 MeV 2.9 - 6 MeV 10 mA 80 μΑ Beam current Normalized emittance 0.1 @7.7 pC See, page 13 [mm·mrad] 1 @77 pC Repetition frequency of 1.3 GHz 1.3 GHz (usual) bunches 162.5 MHz (for LCS) 1-3 ps (usual) RMS bunch length 1-3 ps (usual) ~ 100 fs (compress.) E_{acc} in main linac 15 MV/m 8.2 MV/m 500 kV Gun high voltage 390 kV Max. heat load at 2K 80 W 100 - 80 W

©Rey.Hori/KEK

The second arc

Circumference: ~ 90 m

Beam Optics of cERL

Injector (gun \rightarrow exit of main linac). Using GPT.

Recirculation loop (exit of main linac \rightarrow beam dump). Optics for LCS experiment is shown. Using elegant.

Time Structure of Beams

Bunch charge: 7.7 pC \rightarrow average current: 10 mA

Initial conditions are determined by the gun-drive laser.

Construction and Commissioning

Picture of the cERL

Beam Operation Time

Beam Current of 80 μA (CW) was Recirculated

Beam Currents: Achievement and Prospect

Gun and SC Cavities worked very stably

Beam Emittance (under study)

O BPM (45)

See poster: T. Miyajima et al., TUPWA067

At an injector energy of E = 6.1 MeV Normalized emittance: ε_n [mm·mrad] = $\beta \gamma \varepsilon$

Bunch charge	At injector	
0.02 pC	0.17 mm⋅mrad	
0.77 pC	≈ 0.3 mm·mrad	
7.7 pC	0.5 - 0.8 mm·mrad	

Measurement location (slit-scan method)

At an injector energy of E = 2.9 MeV $(\varepsilon_{n,x} / \varepsilon_{n,y})$

 Bunch charge
 At injector (E=2.9 MeV)
 At recirculation loop (E=19.9 MeV)

 0.02 pC
 0.14 / 0.14

 0.5 pC
 0.32 / 0.28

 7.7 pC
 2.5 / 2.9
 5.8 / 4.6

Measurement location (Q-scan method)

For LCS experiment

Very preliminary

Demonstration of Energy Recovery ($I_0 = 30 \mu A$)

(Power lost in cavity) = $(P_{in}$: input power to cavity) - $(P_{ref}$: reflected power from cavity)

Laser Compton Scattering (LCS)

IPAC'15

R. Nagai et al., Demonstration of High-flux Photon Generation from an ERL-based Laser Compton Photon Source, TUPJE002

A. Kosuge et al., Development of a High Average Power Laser for High Brightness X-ray Source and Imaging at cERL, TUPWA066

Work is supported by:

A government (MEXT) subsidy for strengthening nuclear security (R. Hajima, JAEA), and Photon and Quantum Basic Research Coordinated Development Program from the MEXT (N. Terunuma, KEK)

The principal parameters

- I - I - I - I - I - I - I - I - I - I		
Electron beams: Energy Repetition rate Max. current	<mark>20 MeV</mark> 162.5 MHz 80 μA	
Laser: Wavelength Repetition rate	1064 nm 162.5 MHz	
Produced X-ray Photon energy	6.9 keV	

Laser enhancement cavity and 45W laser

Experimental hut

Beam Optics for the LCS

- Low-beta insertion for small beam sizes at IP
- Transport beams to the dump with small beam losses

Beam optics was established

IP: interaction point

Design optics (example: "70% middle" optics)

$$\sigma_{x}^{*} = 21 \ \mu m, \ \sigma_{y}^{*} = 33 \ \mu m \ at \ IP$$

Beam sizes at IP were estimated from Q-scan data $\sigma_{\rm x}^* \sim 13~\mu{\rm m},~\sigma_{\rm v}^* \sim 25~\mu{\rm m}$ (example)

 σ_{x}^{*} , σ_{v}^{*} < (resolution of the screen monitor)

Bunch charge: 0.5 pC/bunch, Normalized emittances: $(\varepsilon_{nx}, \varepsilon_{ny})=(0.47, 0.39)$ mm·mrad

X-ray was Successfully Produced by LCS

See posters for detail: R. Nagai et al., TUPJE002 A. Kosuge et al., TUPWA066

Parameters of electron beams:

Energy [MeV]	20
Bunch charge [pC]	0.36
Bunch length [ps, rms]	2
Spot size [μ m, rms]	30
Emittance [mm mrad, rms]	0.4
Repetition Rate [MHz]	162.5
Beam current [µA]	58

Parameters of laser (enhanced by cavity):

Center wavelength [nm]	1064
Pulse energy [μ J]	64
Pulse length [ps, rms]	5.65
Spot size [μ m, rms]	30
Collision angle [deg]	18
Repetition rate [MHz]	162.5

Results:

Photon energy = 6.9 keVDetector count rate = $1200 \text{ cps } @\phi 4.66 \text{mm}$ Source flux = $4.3 \times 10^7 \text{ ph/s}$ (*)

(*) calculated by CAIN/EGS simulations

Demonstration of high-quality and stable electron beam.

Measured spectrum of produced X-ray

An X-ray image of a hornet which was taken using LCS-produced X-ray. Detector: HyPix-3000 from RIGAKU. Detector was apart from the sample by approx. 2.5 m.

The Second Photocathode DC Gun

M. Yamamoto, to be presented at ERL2015.

- Vacuum pressure: 4×10⁻¹⁰ Pa
- Conditioned up to 550 kV
- 500 kV was hold for 50 h without any trips
- Ready for beam-extraction test

he second gun at a test bench

Summary and Outlook

- The Compact ERL was commissioned and is in stable operation.
- Learned many lessons from the commissioning.
- The photocathode DC gun and both (injector and ML) SC cavities are operating very stably.
- Achieved beam current of 80 μA.
- X-ray of 7 keV was successfully produced from laser Compton scattering.
- We have established many important technologies for the ERL light source.
 We continue to conduct R&D effort on remaining issues such as:
 - Improved cavity-assembly technique for higher accelerating gradient
 - Mass-production technique for main-linac cavities

Subjects in FY2015

- Lower emittance at high buhch-charges ($q_b \ge 7.7 \text{ pC}$)
- Beam current: 1 mA
- Bunch compression (σ_t ~ 100 fs)
- Higher X-ray flux in LCS experiment

Acknowledgment

We would like to thank the people of ERL community, especially, the members of the Jefferson Lab. and the Cornell University, for useful information and discussions.

