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Abstract
Flat beams feature unequal emittances in the horizontal

and vertical phase space. Such beams were created success-
fully in electron machines by applying effective stand-alone
solenoid fringe fields in the electron gun. Extension of this
method to ion beams was proposed conceptually. This con-
tribution is on the decoupling capabilities of an ion beam
emittance transfer line. The proposed beam line provides
a single-knob-tool to partition the horizontal and vertical
rms emittances, while keeping the product of the two emit-
tances constant as well as the transverse rms Twiss param-
eters (αx,y and βx,y ) in both planes. It is shown that this
single knob is the solenoid field strength, and now we fully
understand the decoupling features.

INTRODUCTION
Beams provided from linear accelerator are generally

round, and the horizontal and vertical emittances are quite
equal. However, the transverse acceptance of subsequent
rings might be flat. For instance, the multi-turn injection
schemes using orbit bumps in one plane impose flat injec-
tion acceptances. Round-to-flat transformation requires a
change of the beam eigen-emittances by a non-symplectic
transformation [1].

Such a transformation can be performed by placing
a charge state stripper inside a longitudinal field region
as proposed in [2]. Inside such a solenoidal stripper,
the transverse inter-plane correlations are created non-
symplectically. Afterwards they are removed symplecti-
cally with three skew quadrupoles. A set-up providing
round-to-flat transformation is shown in Fig. 1. Such a
solenoidal stripper is proposed to be integrated into the ex-
isting charge state stripping and separating beam line of the
GSI UNILAC [3].

Figure 1: Emittance transfer experiment (EMTEX) beam
line for demonstration of transverse rms emittance transfer.

BASIC MATHEMATICAL FOUNDATION
The four-dimensional symmetric beam matrix

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

〈xx〉 〈xx ′〉 〈xy〉 〈xy′〉
〈x′x〉 〈x′x′〉 〈x′y〉 〈x′y′〉
〈yx〉 〈yx′〉 〈yy〉 〈yy′〉
〈y′x〉 〈y′x′〉 〈y′y〉 〈y′y′〉

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

contains ten unique elements, four of which describe the
coupling. If at least one of the elements of the off-diagonal
sub-matrix is non-zero, the beam is x-y coupled. The four-
dimensional rms emittance ε4d is the square root of the de-
terminant of C, and the projected beam rms emittances εx
and εy are the square roots of the determinants of the on-
diagonal sub-matrices. Diagonalization of the beam matrix
yields the eigen-emittances ε1 and ε2, and the transverse
eigen-emittances are calculated as [4]:

ε1 =
1
2

√
−tr[(CJ)2] −

√
tr2[(CJ)2] − 16|C |, (2)

ε2 =
1
2

√
−tr[(CJ)2] +

√
tr2[(CJ)]2 − 16|C |. (3)

The four-dimensional matrix J is the skew-symmetric
matrix with non-zero entries on the block diagonal of form:

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Any symplectic transformation M obeys

MT JM = J. (5)

Eigen-emittances are invariant under symplectic transfor-
mations, and the transverse eigen-emittances are equal to
the transverse rms emittances when inter-plane correlations
are zero.

STRIPPING INSIDE A SOLENOID
Stripping inside a solenoid is fundamentally different

from stripping between two solenoids due to the longitudi-
nal magnetic field component and the fringe fields. In case
of pure transverse field components (dipoles, quadrupoles,
n-poles) there is equivalence between stripping inside this
magnet and stripping between two such magnets of half
lengths.
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Let C0 denote the second moment matrix at the entrance
of the solenoid. If the beam has equal horizontal and verti-
cal rms emittances and no inter-plane correlations, the beam
matrix can be simplified to (in the case here, αx,y=0)

C0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε β 0 0 0
0 ε

β 0 0
0 0 ε β 0
0 0 0 ε

β

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

Assuming a very short solenoid, its transfer matrix can
be divided into two parts

Rin =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 kin 0
0 0 1 0
−kin 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

Rout =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 −kout 0
0 0 1 0
kout 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

The first part describes the entrance fringe field and the
second part is the exit fringe field. If the beam has the
same beam rigidity at the solenoid entrance (no foil inside
solenoid) and exit kin is equal to kout (kin=kout=k). In
here the focusing strength of the solenoid is

k =
B

2(Bρ)
. (9)

B is the on-axis magnetic field strength and Bρ is the
beam rigidity. The beam matrixC1 after the entrance fringe
field k is found as

C1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε β 0 0 −kε β
0 ε

β + k
2ε β kε β 0

0 kε β ε β 0
−kε β 0 0 ε

β + k
2ε β

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

The off-diagonal sub-matrices describe the correlations
and the values of 〈xy〉 and 〈x ′y′〉 are zero. In order to
change the eigen-emittances, a non-symplectic transforma-
tion has to be integrated into the round-to-flat transforma-
tion section. The transformation through the solenoid is
non-symplectic if the beam rigidity is abruptly changed in
between the entrance and exit fringe fields, thus the beam
properties are reset inside the solenoid. The non-symplectic
transformation is accomplished for instance by changing the
beam rigidity Bρ in between the fringe fields from (Bρ)in
to (Bρ)out through charge state stripping. Defining

δq :=
(Bρ)in
(Bρ)out

(11)

the exit fringe field transfer matrix changes to (kin=k,
kout =δqk)

R
′
out =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 −δqk 0
0 0 1 0
δqk 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

The focusing strength of the solenoid k is calculated from
the unstripped charge state. The elements of the beam ma-
trix C′1 directly after the stripper foil inside of the solenoid
but still before the exit fringe field are

C
′
1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε β 0 0 −kε β
0 ε

β + k
2ε β + Δϕ2 kε β 0

0 kε β ε β 0
−kε β 0 0 ε

β + k
2ε β + Δϕ2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)
with stripping scattering effects on the angular spread be-
ing included. The parameter Δϕ2 is the scattering amount
during the stripping process, and the stripper foil itself is
modeled by increasing the spread of the angular distribution
through scattering. After the stripper foil the beam passes
through the exit fringe field with reduced beam rigidity and
the beam matrix C′2 after the exit fringe field becomes

C
′
2 =

[

εnRn akεn βn Jn
−akεn βn Jn εnRn

]

(14)

where a :=δq − 1 and

εn =

√
ε β(
ε

β
+ a2k2ε β + Δϕ2), βn =

βε

εn
, (15)

introducing the 2×2 sub-matrices Rn and Jn

Rn =
[

βn 0
0 1

βn

]

, Jn =
[

0 1
−1 0

]

. (16)

The amount of eigen-emittance transfer scales with the
longitudinal magnetic field strength and the beam rms sizes
on the stripper. Inter-plane correlations are created and the
rms emittances and eigen-emittances after the solenoid with
stripper foil read

εx,y = εn , ε1,2 = εn (1 ± ak βn ) . (17)

The parameter t is introduced to quantify the inter-plane
coupling. If t defined as

t =
εxεy

ε1ε2
− 1 ≥ 0 (18)

is equal to zero, there are no inter-plane correlations and the
beam is fully decoupled. After the solenoid exit fringe field,
the t value can be calculated as

t =
a2k2ε β
ε
β + Δϕ

2 (19)

and the four-dimensional rms emittance is

ε4d = ε1ε2 = ε
2 + ε βΔϕ2 . (20)

The four-dimensional rms emittance increase is propor-
tional to the beam sizes on the stripper foil. It is purely from
scattering in the foil; it is not caused by the shift of beam
rigidity inside the longitudinal magnetic field.
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DECOUPLING SECTION
The simplest skew decoupling section only contains three

skew quadrupoleswith appropriate betatron phase advances
in each plane. Let Rq be the 4×4 matrix corresponding to
a certain arrangement of quadrupoles and drift spaces and
assume that this channel is represented by an identity matrix
in the x-direction and has an additional 90◦ phase advance
in y-direction as in [5]

Rq =
[

In On

On Tn

]

. (21)

Here the 2×2 sub-matricesOn , Tn and In are defined as

On =

[

0 0
0 0

]

, Tn =
[

0 u
− 1

u 0

]

, In =
[

1 0
0 1

]

. (22)

If the quadrupoles are tilted by 45◦ the 4×4 transfer matrix
can be written as

R = Rr RqRTr =
1
2

[

Tn+ Tn−
Tn− Tn+

]

, (23)

where

Rr =
√

2
2

[

In In
−In In

]

, Tn± = Tn ± In . (24)

The beam matrix C′3 after the decoupling section is

C
′
3 = RC

′
2R

T
=

[

η+Γn+ ζΓn−
ζΓn− η−Γn+

]

, (25)

and the 2×2 sub-matrices Γn± are defined through

Γn± =
[

u 0
0 ± 1

u

]

, (26)

with
η± =

εn

2
(
βn

u
+
u
βn
± 2ak βn ), (27)

and
ζ =
εn
2
(− βn

u
+
u
βn

) . (28)

Assuming that this beam matrix is diagonal, its x-y compo-
nent vanishes

ζΓn− = On (29)

solved by
u = βn . (30)

Suppose that the decoupling transfer matrix R is able to
decouple the two transverse planes of C′2. We still do not
know how this transfer beam line looks in detail, but anyway
we calculate the final rms emittances obtaining

εx,y =
εn

2
(
βn

u
+
u
βn
± 2ak βn ) . (31)

This idealized example serves illustrating the princi-
ple, and it may be accomplished with just three skew

quadrupoles. For a given solenoid strength k0, referring to
the unstripped beam, the corresponding quadrupole gradi-
ents of the decoupling section are determined using a numer-
ical routine, such that finally the rms emittances are equal
to the eigen-emittances. If these optimized gradients are
applied to remove inter-plane correlations produced by a
different solenoid strength k1, the resulting rms emittances
and eigen-emittances at the exit of the decoupling section
are calculated to be

εx,y =
εn (k1)

2

[

βn (k1)
βn (k0)

+
βn (k0)
βn (k1)

± 2ak1 βn (k1)
]

(32)

and
ε1,2 = εn (k1)

[
1 ± ak1 βn (k1)

]
(33)

with the parameter t

t =
a4 ε2 β2

( εβ + Δϕ2)( εβ + a2k2
0ε β + Δϕ

2)
(k2

1 − k2
0 )

2

4
. (34)

In the same way the rms Twiss parameters of a beam cou-
pled by k1 but decoupled by R(k0) are found from Equ. (25)
as

α̃x = α̃y = 0, β̃x = β̃y = βn (k0) , (35)

showing that the rms Twiss parameters after decoupling
section do not depend on the coupling solenoid strength
k1 if the decoupling section was set assuming a coupling
strength k0.

EMTEX beam line uses more elements than a single skew
triplet because of finite apertures and gradients of a real ex-
periment. Its decoupling section comprises a quadrupole
triplet and a skew quadrupole triplet separated by a drift.
The quadrupole gradients are optimized numerically from
a numerical routine to remove the inter-plane correlations
thus minimizing the horizontal (for instance) rms emit-
tances to the lower of the eigen-emittances.

DYNAMICS SIMULATION
Fig. 2 illustrates the transverse emittance transfer and the

multi-particle beam dynamics simulations have been done
using the TRACK code [6].

In the first step we assume that the power supplies of
the solenoid and the skew quadrupole triplet are turned off.
This process is an ordinary stripping process and the eigen-
emittances are equal to the rms emittances at the entrance
and exit of this section. Due to the stripping, and the growth
of eigen-emittances and rms emittances is unavoidable. It
is the reference scenario to which the transverse rms emit-
tance transfer scenario is to be compared.

In the latter case, the power supplies of the solenoid
and the skew quadrupoles triplet are turned on. Once the
beam enters the entrance fringe field maps of the solenoid,
the eigen-emittances start to split gradually. After strip-
ping, the exit fringe field maps of the solenoid is passed
by the beam with reduced beam rigidity, thus overcompen-
sating the previous eigen-emittance separation; the eigen-
emittances diverge inside the solenoid and are preserved
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Figure 2: Evolution of the rms emittances and eigen-
emittances along the EMTEX beam lines for two cases.

afterwards. Along the decoupling skew quadrupole triplet
the rms emittances are made equal to the separated eigen-
emittances. Compared to the reference scenario, the final
horizontal rms emittance is reduced significantly. Emit-
tance transfer is non-symplectic and the amount of trans-
fer can be controlled by the solenoid field strength and the
beam size on the stripping foil.

DECOUPLING CAPABILITY ANALYSIS
Final eigen-emittances and rms emittances at the exit of

the skew quadrupole triplet calculated using Equ. (23) and
those obtained from tracking through EMTEX beam line
are compared in Fig. 3.

Figure 3: Eigen-emittances and rms emittances calculated
by analytical method based on the decoupling matrix of
Equ. (23) and by multi-particle tracking through the EM-
TEX beam line.

The remarkable result is that both decoupling matrices
work effectively for a wide range of longitudinal magnetic
field values, i.e. the beam is well decoupled for a wide
range of longitudinal magnetic fields around the gradients

the quadrupoles have been optimized for. Additionally, in
both cases the decoupling performance is independent from
the sign of k1 as suggested by Equ. (34) and weakly de-
pended on (k1-k0). This behavior simplifies the decoupling
significantly as re-adoption of gradients to the solenoid
field can be skipped within a reasonable range of solenoid
fields. It provides a single-knob tool to partition the hori-
zontal and vertical beam rms emittances. EMTEX will use
the solenoid field strength to control the amount of eigen-
emittance change, and the decoupling gradients must be re-
adopted to the specific solenoid field strength.

MATCHING CAPABILITY ANALYSIS
Another convenient feature of EMTEX, which can be

explained for the generic case of decoupling according to
Equ. (23), seems to manifest as a general rule in numerical
matrix as well as in tracking calculations. Its generality we
cannot explain for the time being: the shape of the trans-
verse beta-functions after the decoupling section does not
practically depend on the solenoid field strength. In other
words, the two transverse rms ellipses after decoupling are
just changed in size through the solenoid field; their orienta-
tion and shape remains unaffected by the solenoid strength.
This matching capability of EMTEX is illustrated in Fig. 4.

DECOUPLING IN THE GENERAL CASE
In order to fully understand the decoupling properties of

generic beam line, a procedure being illustrated in Fig. 5.
Suppose a there is any arbitrary beam line MD that pro-

vides decoupling, and this beam line includes x-y coupling
linear elements. We prolongMD by a beam line represented
by the matrix

A =
[

Ax On

On Ay

]

. (36)

with the 2×2 sub-matrices Ax and Ay , and A must not in-
clude any x-y coupling element. The resulting total beam
line R is the product AMD, then we have non-coupling line
A=RM−1

D . As shown above, at the exit of R the properties
hold. From the exit of R the Twiss parameters α, and β (in
both planes) are transported backwards to SD by applying
A−1 being aware that α, and β do not depend from the fringe
strength. As A does not include any x-y coupling element,
neither does A−1. Accordingly, the back-transformed Twiss
parameters at SD also do not depend on the fringe strength.
The same way the invariance of the Twiss parameters w.r.t.
the fringe strength is kept through the back-transportation
by A−1, the weak dependence of t(k1) is back-transported
and preserved through A−1. Since A−1 is non-coupling, it
preserves t value. In other words, the properties at the exit
of R are preserved during back-transportation by A−1. As a
consequence the properties hold also at the exit of the arbi-
trarily chosen decoupling beam line MD .

These arguments are summarized in the formula

MD = A−1R (37)
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Figure 4: The transverse emittance portraits at the exit of the
beam line for different solenoid field strengths. The gradi-
ents of the quadrupoles and skew quadrupoles are constant.
The rms Twiss parameters do not depend on the solenoid
field strength.

R has the properties, which has been derived in the previous
section. The matrix A−1 does not change them since it is
non-coupling. As a consequence, the properties are also
intrinsic properties of MD [7].

CONCLUSION AND OUTLOOK
A beam line for demonstration of round-to-flat transfor-

mation of an initially uncoupled ion beam was presented.
The net effect on the beam is a non-symplectic transfor-

Figure 5: Extension of the decoupling features of the
generic beam line R to any decoupling beam line MD . SF
denotes the location of the initially coupling stand-alone
solenoid fringe field. The arbitrary decoupling beam line
MD ends at SD, and the generic beam line R ends at SR .
The beam line A does not include any x-y coupling element.

mation creating inter-plane coupling, being removed after-
wards along a beam line from one regular quadrupole triplet
and one skew quadrupole triplet. Angular scattering during
stripping was included.

The beam line decoupling performance was found to be
very stable w.r.t. the magnetic field strength of the solenoid,
i.e. the same decoupling gradients can be applied for a wide
range of solenoid fields without relevant reduction of the de-
coupling performance. After the beam is decoupled its rms
Twiss parameters αx , βx ,αy , βy do not practically depend
on the solenoid field strength that created the coupling.
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