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Abstract 

In linacs, the longitudinal focalization is done by 

nonlinear forces and the acceleration induces a damping 

of the phase oscillations. The longitudinal beam dynamics 

is therefore complex, even when the nonlinear space-

charge forces are ignored. The three different ways to 

study and understand this zero-current longitudinal beam 

dynamics are presented and compared. 

THREE WAYS TO STUDY THE 

LONGITUDINAL BEAM DYNAMICS 

As schematically illustrated by Fig. 1, there are three 

different methods traditionally used to compute the 

longitudinal beam dynamics in linacs. 

 
Figure 1 : Schematic representation of the energy 

evolution with the 3 methods used to compute the 

longitudinal dynamics : integration of the EoM in field 

maps (blue), mapping from cavity to cavity (violet), from 

the EoM obtained in smooth approximation (green). 

The first method, by far the most accurate but 

computer-time consuming, consists in integrating the 

equation of motion (EoM) (1) using field maps giving the 

amplitude of the rf accelerating field        .                                                                

 

 

(1) 

The second method consists in computing the 

evolution of the particle energies using the so-called 

Panofsky equation (2) [1] which gives the total energy 

gain produced by an accelerating gap or a cavity. 

                       (2) 

In (2),   is the particle charge,    the accelerating field 

mean value,    the gap or cavity length,      the Transit 

Time Factor (TTF) and    the rf phase when the particle 

crosses the gap or cavity center. The exact value of the 

TTF is given by (3) which shows that all the information 

concerning the field value along the particle trajectory 

and the evolution of the particle “velocity”      have 

been transferred into the TTF. 

                                              
      

                                                     
      

 

 

(3) 

Using (3) the computation of the particle energy 

evolution is even more complicated than using (1); the 

practical use of the Panofsky equation often used for linac 

designs requires therefore several approximations. 

The first approximations consist in assuming that the 

accelerating field            seen by the particle is an 

odd function of z and that the evolution of the particle 

radial position and velocity can be neglected. In this case 

the second integral of (3) vanishes and the TTF can be 

expressed as a function of the particle radial position (  ) 
and “velocity” (  ) at the entrance of the gap or cavity (4).                                              

      (4) 

Under the form (4), the use of an analytical expression 

of the accelerating field distribution           allows a fast 

computation of the TTF, then a fast computation of the 

particle energy evolutions using (2). 

Eq. (4) has nevertheless the redhibitory drawback to 

produce non symplectic transformations inducing large 

spurious emittance growths [2]. The only way to build a 

simple symplectic mapping (5) is to use the synchronous 

particle TTF (               ) for any particle, then to neglect 

the effect of the particle velocity spread on the TTF. The 

error introduced by all these approximations can be very 

significant in the case of superconducting linacs with 

large energy gains per cavity and large energy spreads.                                                        

(5-1) 

                                           (5-2) 

The third method used to compute and understand the 

longitudinal dynamics consists in considering a 

continuous longitudinal focalization (smooth 

approximation). In this case the mixing of (5-1) and (5-2) 

leads to the second order differential equation (6) which 

describes the particle phase oscillations around the 

synchronous particle. In (6)     is the zero-current 

longitudinal phase advance per unit of length and     is 

the damping coefficient which will be discussed later on.                               

                                          

 

 

(6) 
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LONGITUDINAL BEAM DYNAMICS 

WITHOUT DAMPING 

The use of (6) with     = 0 allows to study the main 

properties of the longitudinal beam dynamics without 

damping (see [3] eg.). Fig. 2 gives an example showing 

the evolution of the separatrix shapes as a function of the 

synchronous phase and the evolution of the particle 

relative phase advances as a function of the phase 

oscillation amplitudes. The strongly nonlinear character 

of the longitudinal motion is well shown by these figures. 

 
Figure 2 : From Eq. (6), separatrix shapes (left) and 

evolution of the particle relative phase advance as a 

function of their amplitude (right) for different 

synchronous phases from -15° (red) to -90° (brown). 

The comparison between the dynamics obtained in the 

framework of the smooth approximation (6) with the one 

given by the mapping (5-1) and (5-2) must be done at a 

-90° synchronous phase to be in the undamped regime. 

This comparison does not show significant differences 

between both methods up to zero-current longitudinal 

phase advances per focusing period of the order of      = 

50°. As shown in Fig. 3, a thin chaotic layer appears 

around the separatrix in the phase-space portrait obtained 

using the mapping at this value. 

 
Figure 3 :      = 50°/lattice phase-space portraits 

Left : smooth approximation Eq. (6) 

Right : mapping Eq. (5-1) and (5-2) 

The difference is more and more important when      

increases as shown by the Fig. 4 phase-space portraits 

plotted using the mapping superimposed on the red 

separatrix calculated from the smooth approximation. 

The study of the longitudinal beam dynamics using the 

mapping shows that the parametric resonances present in 

the stable region are always excited (Fig. 2 right hand side 

allows to estimate their positions). One can notice that the 

1/4 resonance start to be excited at      = 82° because at 

this value calculated using the smooth approximation the 

real value of the phase advance per period is ~ 92°. 

In addition, the lowest order resonances which are more 

and more numerous in the separatrix area as      

increases form a broader and broader chaotic sea leading 

to a higher and higher reduction of the longitudinal 

acceptance (a phenomenon described in [4] and [5]). 

 
Figure 4 : Phase-space portraits from the mapping. 

From top left to bottom right :      = 60°/lattice (1/8 res.)         = 70°/lattice (1/6 res.)      = 82°/lattice (1/4 res.)         = 86°/lattice (1/4 res.) 

The legitimate question arising looking to these results 

is “is this behaviour real or induced by the repetitive 
errors (which can be seen as a periodic excitation) done 

using the mapping?” or, in other terms, “is it a spurious 

effect of the mapping?” 

The answer is given by Fig. 5 which shows the phase-

space portraits obtained making the integration of the 

EoM with the cavity “field map” given by Eq. (7).                                           

 

(7) 

Fig. 5 left which is the result of a calculation done 

without drift space between the cavities (lattice length =   ), then with a purely sinusoidal field map, shows that 

such an accelerating field do not excite the resonances, 

even at      = 80°/lattice. At the opposite, Fig. 5 right 

plotted with a lattice length =     , then with a field map 

with harmonics, shows that the resonances are excited by 

these harmonics which are always present in the mapping. 

One can notice the great similarities between the Fig. 4 

(mapping) and Fig. 5 (EoM integration) phase-space 

portraits at      = 70°/lattice with the 1/6 resonance. 

 
Figure 5 : Phase-space portraits from integration of the 

EoM in the “field map” (7) 

Left :      = 80°/lattice, purely sinusoidal field map 

Right :      = 70°/lattice, field map with harmonics 
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LONGITUDINAL BEAM DYNAMICS 

WITH DAMPING 

The     coefficient in (6) is given by (8), it is positive 

when the beam is accelerated. In this case the particle 

phase oscillations are then damped and the attractor of the 

stable trajectories in the (d , d ’) trace-space is the 

central point (0, 0). 

Fig. 6 gives two examples of such trajectories for a         synchronous phase. Superimposed to the 

undamped separatrix in blue, the extreme stable 

trajectories in red and green define the basin of attraction 

(longitudinal acceptance with the classical golf-club 

shape). The size of this basin and the damping speed of 

the trajectories increase rapidly as     increases.                                        (8) 

 
Figure 6 : (d , d ’) basin of attraction (smooth approx.)        ,     = 0.10 left and 0.50 right 

When the (d , d ’) “trajectories” are plotted using the 
mapping, Fig. 7 shows that, depending on their initial 

conditions, the particles are attracted either by the central 

point (0, 0) or by the resonance-island central points. 

 
Figure 7 : (d , d ’) trajectories (mapping)      = 82°/lattice,       = 0.02 

This behaviour is well confirmed plotting the basin of 

attractions for      = 70° and 82°/lattice (Fig. 8 and 9 

respectively). To plot these figures, at initial conditions 

covering the whole (d , d ’) space, a red dot is plotted 

when the motion is attracted by the central point and a 

green dot is plotted when the attractor is in the resonance 

islands. 

To summarize we can say that the stable fix points of 

the resonance islands can act as main attractors at low 

damping rates but that the damping can annihilate the 

effect of the resonances. Anyway, the perturbation of the 

damping towards the central point (0, 0) leads to 

normalized emittance increase. 

  
Figure 8 : (d , d ’) basin of attraction (mapping)      = 70°/lattice,       = 0.01 left and 0.10 right 

  

  
Figure 9 : (d , d ’) basin of attraction (mapping)      = 82°/lattice, from top left to bottom right :       = 0.01, 0.05, 0.10 and 0.20 

SUMMARY 

The zero-current longitudinal beam dynamics is 

complex; at least more complex than what is taught in 

classical accelerator books and accelerator schools! 

The nonlinear character of the zero-current longitudinal 

dynamics is such that the parametric resonances affect the 

beam core and that there is strong longitudinal acceptance 

reductions as soon as the zero-current longitudinal phase 

advance is higher than 60°/lattice. 

To understand the longitudinal beam dynamics in linacs 

it is essential to take into account the damping induced by 

the acceleration; the damping coefficient should be 

considered as an important parameter to analyze a linac 

design and understand its longitudinal beam dynamics. 
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