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VORTEX-PENETRATION FIELD AT A GROOVE WITH A DEPTH
SMALLER THAN THE PENETRATION DEPTH*
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Abstract

Analytical formula to evaluate the vortex-penetration
field at a groove with a depth smaller than penetration depth
is derived, which can be applied to surfaces of cavities or
test pieces made from extreme type II superconductors such
as nitrogen-doped Nb or alternative materials like Nb3Sn or
NbN.

INTRODUCTION

The vortex-penetration field B,, is the field at which a vor-
tex overcome the Bean-Livingston barrier [1] and start to
penetrate into the superconductor (SC). B,, of extreme type
IT SC, where the penetration depth A is much larger than
the coherence length &, can be evaluated in the framework
of the London theory. Materials that attract much attentions
in the field of SC accelerating cavity such as dirty Nb like
nitrogen-doped Nb and alternative materials like Nb3Sn or
NbN are all categorized into this class. For an SC with an
ideal flat surface, B,, is given by B, = ¢o/(4n1é) ~0.7B,,
where ¢ is the flux quantum and B, is the thermodynamic
critical magnetic field. Actually, experiments shows fields
can not reach such a level. More realistic assumption, such
as surface irregularities, should be incorporated.

In this paper we consider a groove with a depth ¢ smaller
than A as a simple example of a surface irregularity, which
assume irregularities on cavity surfaces or test pieces made
from extreme type II SC such as a nitrogen-doped Nb or
alternative materials. B, at this type of irregularity has not
been obtained so far, in spite of the fact that there are many
studies on B, at a surface irregularity [2, 3, 4, 5].

MODEL

Let us consider a groove shown in Fig. 1(a). Gray and
white regions represent the SC and the vacuum, respec-
tively. Surface, groove and applied magnetic-field are per-
pendicular to the x-y plane. The half width of the groove
and the slope angle are given by R and m(a — 1)/2, respec-
tively, and thus the depth is given by 6 = R tan[n(a —1)/2],
where 1 < @ < 2. The depth is assumed to satisfy
Exiox A

FORCES ACTING ON A VORTEX AND
THE VORTEX-PENETRATION FIELD

Suppose a vortex is at the position (x,y) = (0, 6 + &),
inside the bottom of groove. This vortex feels two distinct
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Figure 1: (a) Groove with a depth that is smaller than the
penetration depth of the material and (b) its map on the w-
plane.

forces: (i) Fy a force from a Meissner current due to an ex-
ternal field and (ii) Fy a force due to an image antivortex that
is introduced to satisfy the boundary condition of zero cur-
rent normal to the surface. The former and the latter draw
the vortex to the inside and the outside of the SC, respec-
tively. The vortex-penetration field is a field at which these
competing forces are balanced.'

Force Due to an External Field

An external magnetic-field pushes a vortex into the su-
perconductor by a force Fyy = Jv X ¢oZ, where Jy is
a Meissner screening-current, ¢g = 2.07 X 1075 Wb is
the flux quantum and Z is the unit vector parallel to the
z-axis. To evaluate Fy;, we evaluate Jy as follows. Ju
satisfies divJy = 0 and one of the Maxwell equations,
JM = rot H, where the magnetic field H plays the role of
the vector potential of Jy;. For our two-dimensional prob-
lem, H can be written as H = (0,0, —¥(x,y)), and Jy is
given by Jy = rot H = (=0y//dy, 0y /0x,0). On the other
hand, since A is assumed to be much larger than the typ-
ical scale of the model, the London equation is reduced
torotJyy = —AH = 0, which allows us to introduce a
scalar potential of Jy. For our two-dimensional problem
the scalar potential can be written as ¢(x,y), and Jy is
given by Jy = —grad¢ = (-90¢/0x,—0¢/0y,0). Since

! Detailed reviews are given in Ref. [6, 7].
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both the two approaches should lead the same Jy, we find

_9¢ _ 9 __99 _0oy
dx ~ dy’ My = "9y T ax’

Imx = (D
which are the Cauchy-Riemann conditions. Thus a function
defined by

Om(z) = ¢(x,y) +iy(x.y), @)

is an holomorphic function of a complex variable z = x+iy,
which is called the complex potential. If ®p(z) is given,
components of Jy are derived from

9 06 _ 0
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By o o a0 @
where the property of the holomorphic function, ®f,(z) =
0¢/0x +i0y/0x, is used. Thus our two-dimensional prob-
lem is reduced to a problem of finding @ (z).

The complex potential ®p(z) is derived from a complex
potential ®y;(w) on a complex w-plane shown in Fig. 1(b)
through a conformal mapping z = F(w), by which orthog-
onal sets of field lines in the w-plane are transformed into
those in the z-plane. The map is given by the Schwarz-
Christoffel transformation,

w
Z=F(w)=K1f Swydw+ K, . 4)
0
The function f(w) is given by

fov) =w w2 ==, 5)

and the constants K; and K are given by

TR
ki = « 37\(/: xa—1)° ©)
F(g)r(T)COST
-1
K = ié:iRtan%, (7

which are determined by conditions that A’ and C’ on the
w-plane are mapped into A and C on the z-plane, respec-
tively. The complex potential on the w-plane is given by
Om(w) = Jow (Jo = K1 Jp), which reproduces the current
distribution on the w-plane: —CDI'VI(W) = —.70. Thus the
complex potential on the z-plane is given by

Dyp(z) = DM(F () = F ' ()], (8)

where F~! is an inverse function of F.
All that is left is to substitute Eq. (8) into Eq. (3). The we
obtain
Jo
Ivix —idvy = ———, )
* T fw)
where dF ~'/dz = dw/dz = (dz/dw)™! = (dF/dw)~! is
used. In order to evaluate Jy at the vortex position z =
Zy = i(0 + &), w corresponding to z,, is necessary. While
no closed form of w = F~!(z) exist, that of an approximate
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expression can be derived. Suppose w = i€ (0 < € <« 1)
is mapped into z = z,, on the z-plane by Eq. (4). Then we
obtain i(6 + &) ~i0 +iK1€”/a, and find a relation

e= ()",

10
e (10)
which immediately leads
a—1
. a-1 (l’é‘:) @
~ == 11
flieg = e = (2 (11)
Substituing Eq. (11) into Eq. (9), we find
K\
M) ==(52) Tho. @) =0, (12)
ag

Then the force due to the external field can be evaluated as

FM JM X ¢02

NG R\ .
= Joy, (13
(r(%)r(%T")acos b §) ooy, (13)

where ¥ is the unit vector parallel to the y-axis.

Force Due to the Image Antivortex

A current associated with a vortex near the surface sat-
isfies the boundary condition of zero current normal to the
surface. This boundary condition can be satisified by re-
moving the surface and introducing appropriate image an-
tivortex (antivotices). Then the current can be expressed as
Jvi = Jv + Ji, where Jy and J; represent currents due to
the vortex and image antivortex (antivortices), respectively.
The force due to the image antivortex (antivortices) Fy is
given by Fy = J1 X ¢Z. Thus our next task is to evaluate Jy
at the vortex position z = z,, = i(d + £).

A scalar and a vector potentials of Jv.1, and the complex
potential @y, can be introduced in much the same way as
the above. Then components of Jy. are given by

dDv,1(z)

dz 14

Jvix —idviry = —
where ®vy,(z) can be derived from the complex potential
Ovy,1(w) on the w-plane. Since the vortex and the image
antivortex on the w-plane are located at w = +ie and —ie,
respectively, @v,1(w) is given by

o

Dyap(w) = 2
0

e [log(w —i€) — log(w +i€)], (15)

and thus the complex potential on the z-plane is given by
Oy41(2) = Dy (F~'(2). (16)

F is the Schwarz-Christoffel transformation given by
Eq. (4). Substituting Eq. (16) into Eq. (14), we find

. 1 —igg ( 1 1 )
Natx—idvary = - a7
VitV = T \w i weie) 17
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At the vortex position z = z, or w = i€, the first term of
the square bracket diverges, which is contribution from the
current due to the vortex and should be abandoned for the
computation of J;. Then J; at the vortex position is give by

. 1 ido ( 1 ) ®o
Ta—idyy = —J=—% a3
b T, Flie) 2mpd® \2ie) ~ drppdiéa (18)
or,
Jaa) = —20 hy(z) =0,  (19)
Ix(Zy —4”#0/1250, IylZv) =Y,

where a relation € f(ie) = €* = aé/K; is used. Then the
force due to the image anti-vortex is given by
%
- y. 20
Ao A2E o (20)
Note that Eq. (20) is reduced to the force from the flat sur-
face when @ = 1, and is maximized when the groove is a

crack with @ ~ 2. Eq. (20) is identical with that given in
Ref. [3].

F1=Jm X ¢poZ =

Vortex-penetration field
The vortex-penetration field B, can be evaluated by bal-
ancing the two competing forces given by Eq. (13) and (20):

( VT R\ %

=) “dodo= —5—.
[(2)T(352)a cos 21 f) drppA2éa

21

The surface current Jy is given by Jo = —p YdB/dx|y=0 =
Bo/ o\, where By is the surface magnetic-field and A is a
quantity with the dimension of length. For examples,

A (semi—infinite SC),
ds A7 . dr . ds
cosh = +(“-+—) sinh —¢

I ds A, dr ds
sinh = +(“+—-) cosh =

A = (22)

(multilayer SC).

where ds, dz, and A’ are an SC layer thickness, insulator
layer thickness and penetration depth of SC substrate mate-
rial, respectively.” The finally we obtain

v

_ %o él(r(%)r(%)acoswi)a;l .
= 4rAé A \/; R i

2 See Ref. [8, 9]. Detailed reviews are given in Ref. [6, 7, 10].
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Note that Eq. (23) is reduced to Bv of semi-infinite SC or
multilayer SC with ideal flat-surface when o = 1.

SUMMARY

Analytical formula to evaluate the vortex-penetration
field at a groove with a depth smaller than penetration depth
was derived. The formula would be useful to analyze rela-
tion between surfaces and performance-test results of cav-
ities or test pieces made from extreme type II SC such as
a dirty Nb like nitrogen-doped Nb or alternative materials
like Nb3Sn or NbN.
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