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Abstract

Fixed Field Alternating Gradient (FFAG) synchrotrons
are designed only in a circular shape, but straight sections
can also be created. To keep the scaling condition, the field
law in straight lines has to be different from the one in cir-
cular ring elements. These straight sections can be used for
transport lines or insertions in FFAG rings like dispersion
suppressors, leading to a new concept of advanced scaling
FFAG.

INTRODUCTION

The concept of FFAG is usually applied to circular ma-
chines. In consequence, each cell is designed to provide a
total bending angle. Based on previous studies [1, 2], the
aim of this paper is to show how scaling FFAG unit-cells
can also be created to guide particles with no overall bend.
The scaling condition, i.e. a same phase advance per cell at
every energy, leads to a different field law than in circular
ring elements. This is the purpose of the first section. In
the following sections, applications of these elements will
be discussed, such as transport lines and insertions in FFAG
rings.

FIELD LAWS IN SCALING FFAG

To determine the field law in scaling FFAG, we start
from the transverse linearized equation of motion:

d2Y

ds2
+ KY Y = 0, (1)

where s is the distance along the reference trajectory, and Y
the transverse coordinate, i.e. x (horizontal) or z (vertical).
Kx andKz are given by{

Kx = 1
ρ2 − K

Kz = K
, (2)

where ρ is the local curvature radius. K is the normal-
ized gradient and is defined as K = 1

Bρ

(
∂Bz

∂x

)
z=0

with B
the magnetic field and x the distance to the reference tra-
jectory.
To obtain the field law in the circular elements, we make

the following hypothesis: the approximation of small an-
gles is used, so we consider s ≈ rθ and ds ≈ rdθ, with
notations given in Fig. 1. Indeed, we liken s = ρξ to the
distance [AB]:

[AB] = ρ sin ξ = r sin θ ≈ ρξ ≈ rθ. (3)
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We use cylindrical coordinates(r, θ, z).
In straight section elements, like in circular elements, we

assimilate s = ρξ to the distance [AB]:

[AB] = ρ sin ξ = y ≈ ρξ, (4)

so s ≈ y and ds ≈ dy. We use cartesian coordinates
(x, y, z).

Figure 1: difference of geometry in circular ring element
(left) and in straight section element (right).

With these hypothesis, we can derive Eq. 1 in both cases.

Circular Ring Element Case

With the circular element hypothesis, Eq. 1 becomes{
d2x
dθ2 + r2

ρ2 (1 − Kρ2)x = 0
d2z
dθ2 + r2

ρ2 (Kρ2)z = 0
(5)

The scaling condition sets that the equations of motion 5
are independent of momentum. Then,⎧⎨

⎩
d
(

r2

ρ2

)
dP

= 0
d(Kρ2)

dP
= 0

⇔

{
r ∝ ρ
r
B

(
∂Bz

∂x

)
z=0

= k
(6)

with k the geometrical field index, independent of mo-
mentum. r ∝ ρ gives the geometrical similarity. Then,
considering x = r − r0 and dx = dr, we can integrate
the differential equation of the system 6 in r. It leads to a
unique solution:

Bz = B0

(
r

r0

)k

(7)

with B(r0) = B0.

Straight Section Element Case

With the straight element hypothesis, Eq. 1 becomes
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{
d2x
dy2 + 1

ρ2 (1 − Kρ2)x = 0
d2z
dy2 + 1

ρ2 (Kρ2)z = 0
(8)

The scaling condition sets that the equations of motion 8
are independent of momentum. Then,

⎧⎨
⎩

d
(

1

ρ2

)
dP

= 0
d(Kρ2)

dP
= 0

⇔

{
ρ = const.
1
B

(
∂Bz

∂x

)
z=0

= n
ρ

(9)

where n is now the field index, also independent of mo-
mentum. ρ = const. gives the geometrical similarity.
Then, considering x = X and dx = dX , withX the trans-
verse cartesian coordinate, we can integrate the differential
equation of the system 9 in X . It leads to a unique solu-
tion [3]:

Bz = B0e
n
ρ
(X−X0) (10)

with B(X0) = B0.

Bending Section Element Case with an infinite
radius

Another point of view to get the law in straight sections
would be to see them as circular sections with an infinite
radius. FFAG straight sections have been studied [4] with a

field law in
(

x
x0

)k

, and this approximation gives the same

result if xo is infinite. Indeed, if r0 tends to the infinite:

lim
r0→∞

(
r

r0

)k

= lim
r0→∞

[(
1 +

x

r0

) r0

x

] x
r0

k

(11)

with r = x + r0.
k in circular elements is the geometrical field index, and
not strictly speaking the field index : k = r0

ρ
n, n being the

field index. So we get back to the exponential law [5]:

lim
r0→∞

(
r

r0

)k

=

[
lim

r0→∞

(
1 +

x

r0

) r0

x

] n
ρ

x

= e
n
ρ

x (12)

TRANSPORT LINE

To confirm the exponential field law in straight sections,
stepwise tracking using Runge Kutta integration in hard
edge field has been realized. An example with a unit-cell
made up of two rectangular magnets, one focusing, the
other defocusing, has been designed. In this case, particles
are protons. We start in the middle of a magnet, to enter in
the unit-cell with no angle. Reference trajectories are ob-
tained and plotted in Fig. 2. Phase advances are obtained
from Fast Fourier Transform (FFT) analysis, tracking the
particle 1024 times through the cell with small initial am-
plitude (1 mm). As expected, both horizontal and vertical
phases advance are constant: μx = 104.8 deg. in horizon-
tal and μz = 112.5 deg. in vertical.

Table 1: Tracking parameters

Length of the magnets 60 cm
Drift 40 cm
Kinetic energy range 80 to 200MeV
Field index 17
Local curvature radius 2.1m
Step size 1mm

Phase advances:
horizontal μx 104.8deg.
vertical μz 112.5deg.
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Figure 2: reference trajectories for kinetic energies from 80
MeV (bottom) to 200 MeV (up).

INSERTIONS

Matching of reference trajectories

Straight sections could be used with bending FFAG sec-
tions, but since field laws in each section are different, it
will occur a difference of reference trajectories at the bor-
der. The purpose of this chapter is to deal with the matching
of these different reference trajectories.
If we match the different cells for a special momentum

Pm, then the condition of matching for the other momenta
will be

(
1 +

x − rm

rm

)kcirc.+1

= e
nstr.
ρstr.

(x−rm) (13)

with kcirc. the geometrical field index and rm the average
radius of a particle with a momentum Pm in circular sec-
tion. nstr. and ρstr. are respectively the field index and the
local curvature radius in straight section. Eq. 13 can be
solved to the first order:

nstr.

ρstr.

=
kcirc. + 1

rm

(14)

The effects of higher orders create a reference trajecto-
ries mismatch for momenta other than Pm. By choosing
this particular momentum, the maximum mismatch could
be minimized. An example has been computed by in-
serting straight sections in the 150 MeV FFAG ring built
in KEK [6], for kinetic energies between 20 MeV and
150 MeV. The result of reference trajectories mismatch be-
tween circular parts and straight parts appears on Fig. 3.
This maximum mismatch is around 1 cm for this case, but
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it would be smaller for larger rings. All things being equal,
the more kcirc., the smaller the reference trajectory mis-
match.
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Figure 3: difference of reference trajectories between cir-
cular cells and straight cells in 150 MeV FFAG ring exam-
ple.

Dispersion Suppressor

In FFAGs, since every energy has a different reference
trajectory, dispersion suppressors can be useful in applica-
tions where all energies are needed at the same position,
such as at the end of a transport line [4], or where excur-
sion is larger than RF cavities in FFAG rings [7]. The pur-
pose of this chapter is to study a possibility of dispersion
suppressors in straight sections.
The effect of a dispersion suppressor would be to sup-

press the excursion and bring every reference trajectory
at the same point. In scaling straight FFAG cells, the ex-
cursion between 2 momenta P0 and P1 is generated from
Eq. 10:

Xtot. = X1 − X0 =
1

n/ρ
ln

(
P1

P0

)
(15)

One principle of a dispersion suppressor would be to in-
crease the factor n/ρ of the exponential law in the cells, to
create a transverse difference of the reference trajectories,
centered on the matched momentum P0. This difference x
for a momentum P1 is given by

x = ln

(
P1

P0

) (
ρ0

n0
−

ρ1

n1

)
(16)

with n0/ρ0 the factor of the normal cell, and n1/ρ1 the
factor of dispersion suppressor.
This difference excites a betatron oscillation of the beam,

and distort the reference trajectory. If the cell has 180-
degree phase advance, the total reduction of excursion is
twice the difference of the reference trajectories.
This assumption is valid only for small differences of

reference trajectories, and several cells are necessary to
suppress a large excursion. If the reduction of excursion
is kept constant for every 180-degree phase advance cell,
the total number of cellsN is determined by

N =
n1/ρ1

2 (n1/ρ1 − n0/ρ0)
(17)

with n0/ρ0 the factor of the normal cell, and n1/ρ1 the
factor of the first cell of the dispersion suppressor.

If the dispersion suppressor is made up of N = 1 cell,
the factor n1/ρ1 of the dispersion suppressor cell is twice
n0/ρ0 of the normal cells.
A scheme of a dispersion suppressor with N = 2 cells

appears on Fig. 4. In this case, (n/ρ)cell1 = 4
3 (n/ρ)normal

and (n/ρ)cell2 = 4 (n/ρ)normal.

Figure 4: Dispersion suppressor made of 2 cells with 180-
degree phase advance each. Doted lines show intrinsic ref-
erence trajectories of the cells, and red line shows the dis-
tortion of reference trajectories generated by the difference
x.

After dispersion suppressors, since all energies are at
the same position, no focusing effect is feasible with keep-
ing the zero-dispersion condition. In cases where a small
dispersion is sufficient but on long distances [7], it would
worth to just reduce the dispersion instead of suppressing
it, to keep the possibility of focusing the particles.
Dispersion suppressors can also be imagined in circular

sections.

SUMMARY

Straight sections in scaling FFAGs can be designed with
a transverse exponential magnetic field law. Tracking in
geometrical model of field has been done to confirm this
scaling law. Applications such as transport lines and inser-
tions in FFAG rings can be imagined. Some of them imply
to connect these straight sections with bending sections, so
to deal with the difference of reference trajectories that is-
sues from it. However this difference can be minimize. An-
other point has been highlighted: dispersion suppressors in
straight sections. A principle has been proposed.
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