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Abstract pendent of time. In the standard approach, the generating

. . - function is a function of the mixed set of variables (old and
The transverse dynamics of an intense charged particle . . . ; .
néw). This makes the perturbative analysis quite compli-

beam propagating through a periodic quadrupole focusinc%ted. In particular, the analysis in Refs. [2, 3] was car-

lattice is described by the nonlinear Viasov-Maxwell sys; /0 only to third order in the small parameterThe
tem of equations. To find matched-beam quasi-equilibrium

e ; X . analysis in Ref. [4] was carried out to 5th order, but the
distribution functions one needs to determine a dynamica . . .
) . ) L . uthors appeared to have made an error in the iterative pro-
invariant for the beam particles moving in the combine

external and self-fields. The standard approach, fé:redure, which invalidates the results. An advantage of the

- ! present approach is that instead of using a generating func-
sufficiently small phase advaneg /27 < 1, is to use . Lt . . .
the smooth-focusing approximation, where the particlgon which is a function of the mixed set of variables, we
X work with functions that depend on the new non-oscillating

dynamics is determined iteratively using the small param- . L L .
etere — (7,/27)1/2 < 1 accurate to order®. Hereo, set of variables from the beginning. This significantly sim-

) . lifies the analysis and develops an iterative procedute tha
is the vacuum phase advance. In this paper, we present ; Lo

) S . .~ makes no reference to the generating function in its final
a perturbative Hamiltonian transformation method whlctfjno

is used to transform away the fast particle OSC'"a“onséquation,while the author of Ref. [2] worked directly with

and obtain the average Hamiltonian accurate to oedler , . . . .
: e : - the Green'’s function of Poisson’s equation. We use the lat-
This average Hamiltonian, expressed in the original phasg- . .
. . ) : . . fer approach because it allows for a simpler treatment, and
space variables, is an approximate invariant of the origina . " .
. . allows us to take into account the boundary conditions quite
system, and can be used to determine self-consistent beam

rm. The authors in Ref. [3, 4] worked with Poisson’s

o ; asily.
equilibria that are matched to the focusing channel. The transverse dynamics of the intense charged particle
INTRODUCTION beam can be described by the nonlinear Vlasov-Poisson

There is growing interest in studying detailed propertiesystem of equations for the beam distribution function
of intense charged particle beams for particle physicsapplf (z, p, s) and the normalized self-field potentidl(x, ).
cations, high energy density physics research using iatenideres = vt is the longitudinal coordinate, and is the
particle beams, and heavy ion beams for inertial fusion emlirected beam velocity. The functigiiz, p, s) satisfies the
ergy and warm dense matter applications, etc. In most gpnlinear Vlasov equation [1]
the applications, intense charged particle beams have to be df  Of da™ 8f  dp™ Of

i ' - =5t —— =2 =0, where
transpo_rted over long distances thrpugh a fpcusmg chan 5 Ds + 75 9 + ds Op° ,
nel, which provides transverse particle confinement. In a i OH  d oI
quadrupole focusing channel, the beam particles experi- T @ _ _ 9 )

ence a transverse linear focusing-defocusing force, which ds op>’ ds Oz’
is a periodic function of time in the beam frame. This osare the particle equations of motion. The Hamilton#in
cillating force provides the necessary focusing only in afor the particle motion is in a force field which is the sum
average sense [1]. For intense charged particle beams, thisa linear externally applied focusing field with the focus-
average force must be strong enough to prevent both théig field strengthz(s) changing periodically as function of
mal and space-charge expansion of the beam particles. axial coordinates according tos(s) = x(s + S), and the
Identifying regimes for stable beam propagation haself-field potential calculated self-consistently usirajsP
been one of the main challenges of accelerator research.sgn’s equation.
particular, the development of systematic approaches thatit is convenient to introduce the re-normalized variables
are able to treat self-consistently the applied periodic for = x/a, 5 = s/8, &(s) = r(s)/ko, p = p/(art’?),
cusing force and the self-field force of the beam particleg = (f/N)a*rg, and¥ = ¥/(a’ky), wheresS is the char-
simultaneously is very important. Several recent investig acteristic period of the applied focusing foreds the char-
tions [2, 3, 4] have used standard Hamiltonian perturbativgcteristic transverse beam dimension, apds the charac-
methods. With these methods, one searches for the gengfiistic value of the lattice functior(s). Equations (1)
ating function that relates the old set of canonical phasenaintain the same form in normalized variables, whereas
space variables to the new canonical set. The new canoAbrmalized Hamiltoniad? takes the form
cal variables are chosen to have a Hamiltonian that is inde- _ Tl N

N b e
H(z,p,s)=¢ 5 + R(3) 5
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N Fir o o Equation (7) expresses particle conservation in the
/ ! / ! / /
+/L(x - ) f(@.p,s)DT'Dp |, (2) phase-space voluniez Dp under the transformation given

L . oo I by Eq. (4). For a canonical transformation, the phase-
For simplicity, we suppress variable indices inside func- . :
- ; o 2 @ space volume is conserved accordingteDp = DQDP,
tions, and adopt the notatiart'z* = 3~ | 2“2, unless and thereforeF (P, () - 0.P 0.P
mentioned otherwise. Moreover, for multi-dimensionalin=", © - - distritfu{ion7 ?l),lnc_tio{u[z;ti;fiéz)i[ﬁ((e \7/Ia7sf)>\;st]a. ta
tegrals, we adopt the notatiofidz1dz2Z = [ DxzZ. In q

o 1)2 , o o tion dF/ds = 0. For a time-independent Hamilto-
Eq. (2),¢ = Srky'", and the Green's functioh(z — ') pjan, there exists a trivial solution to the Viasov equa-
satisfies the equation tion, F = G[K(Q,P)] for arbitrary functionG. The
2 o ., _ periodic solution to the original Vlasov equation (1) can
oz @L(x — ') =Kz - 1). (3)  be found by inverting Egs. (4) according fdz, p, 5) =

_ . ] G{K¢g|Q¢(z,p,s), Pa(x,p,s)]}. Here, the subscripfz
Here, K = 2mq*N/myviv;koa” is the normalized beam de{note[s tfge imp)licit éepenc)j]gnce of the solution on the
self-field perviance, which is a measure of the beam spacgpjce of the functioiiz. For solutions of this form, we can
charge intensity;;, andg are the particle mass and chargeyse Eq. (7) to express the original Hamiltonian in Eq. (2)
respectively, andy, = (1 — vZ/c?)~1/2 is the relativis- g
tic mass factor. In Eq. (2), the functighis normalized - N o o
according to[ dzdpf = 1. In what follows, we assume H(z,p, s) = e{p p? | K(s)aa @®)
that all terms inside the square bracket in Eq. (2) are of 2 2
the same order. In writing the solution to Poisson’s equa- - - S
tion using the Green’s function, which is a function of the +/L[x —2(Q, P, s)|GIK(Q, P)]DQDP}'
differenceL(|z —z’|), we have also assumed that the trans- . ) _ _
verse boundaries are infinitely far away. This assumption EQuations (4) and (6) can be solved iteratively in terms
is not strictly necessary, but is made here for simplicity. ©f the small parameter< 1. Specifically, we assume that

p:PJFZEan $:Q+Z€nibn,

PERTURBATIVE HAMILTONIAN

n=1 n=1
TRANSFORMATION METHOD V=Y v, K=Y K ©)
In what follows, we drop the bar notations over the n=1 n=1
normalized variables. To determine the matched solyyhere (Q,P,s), z.(Q,P,s), Un(Q,Ps) and
tion of the Vlasov equation (1), we search for a time—Kn@’P’ s) (n = 1,2,..) are functions to be deter-
dependent canonical transformation of the form [1, 2, 3, 4hined by the iterative procedure.
(z%,p% H,s) = (Q%, P K, s) Using Egs. (9), we expand the functidhin Eq. (8) ac-
2% — Jco‘(Q,P,s), P = po‘(Q,P,s), (4) cording to
with time-independent transformed Hamiltoni&rQ, P). H(z,p,s) =Y _ €"Hn(Q, P, ). (10)
For every canonical transformation there is a functton n=1
that satisfies the differential relation Substituting the expansions [Egs. (9) and (10)] into
pda® — Hds = dS + P*dQ” — Kds. (5) FAs:(6), we obtain
OH,
It is convenient to search for a functighof the form xﬁ =< /ds P8 >

S =U+ P*(x — Q)% whereU(Q, P, s) is a function of _—

the new phase-space variables. The relationships between L« /dt Z (8:0%1 Oz o,y %) S
the old and new set of phase-space coordinates are obtained — ds OPP QPP 0Os ’
from Eq. (5), and can be expressed as -

OH,
8 _ =68_ n
(z-Q)"=@/P-P) - ; -
8(8Pﬁ Q) a]?U < /d > (8])%‘1 Orp _ O a;::;*) >
o0 —Q)” - s — - ,
(b =P) = -0 = P)"=Fa5—+ 505" 2o\ "5 0Q°  9Q7 0s
_ 20 —Q)* oU — ., 0z
K—-H=—(p-P) 5 T3, © Kn_<Hn>—Z<pn,lE>,

=1
The distribution function in the new coordinatBsQ), P, s)
is related to the distribution function in the old set of coor o
dinatesf(z, p, s) by opy, ”Z <8p$:_l dxy Op%_, dx )

F(Q,P,s) DQDP = f(z,p,s) DzDp. 7 oP° &=\ 0Q 9P7  9PF oQ7

where the average valyg satisfies the equation

(12)
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Here, < a >= [ a(s)ds/S and < a >= a— < DISCUSSION OF RESULTS

a >. Fora prescnbed Hamiltonian functiafi (z, p, s) The results obtained by this method in Eq. (13)—(15) are

[Eq. (8)], Egs. (11) and (12) provide an iterative procedurgonsistent with previous results obtained to third order in
which can be used to determine the canonical transformge, .41 parameter — SKJUQ in Refs. [2, 3]. Here, we

tion in Eq. (4), and the new time-independent Hamiltoniaf e heen able to extend the perturbative treatment to fifth
K(P,Q) as implicit functions of the equilibrium function order in the small parameter by avoiding the unneces-
sary calculation of the generating function as a function of
ILLUSTRATIVE APPLICATION a mixed set of variables. For a specific choice of distribu-
As a specific application, in this section we examine thggon functionG(K), Eq. (13) can be solved to determine
canonical transformation in Eq. (4), valid up to fifth ordefthe new time-independent Hamiltoni@n The fifth-order
in the small parametet, for the intense beam system withcorrections to the new Hamiltonian are of two kinds. The
Hamiltonian given by Eq. (8), for the choice of the latticecorrection to the kinetic term gives a correction to the aver
functionx®(s) = & sin(ws)n®, with vectorn = (1, —1). age frequency of the particle motion in the external oscil-
Here, we omit the details and only present the final regting field, whereas the last term gives the correctionéo th
sults. The new time-independent Hamiltonian is detefzyerage self-field potential. The final term can be expressed

mined to be [5] as a self-field potential,,, that satisfies the modified Pois-
papo 38 R QuQe son’s equation
K= U egnr)) T oo i o
(@) = [ Ln(@-QG(K)DQDP.  (16)
+ / DQDPG(K) | L(@Q - Q) + 13 ith the modified Green's functio,,, () defined by
-2
B o v — Vet T 72 02L
€ 4w4(Q Q) (Q Q) nn Q0P Lm(Q):L(Q)+€4m (Ql)Qa(Ql)z
Furthermore, the detailed expressions for the canonical by 2L Ly 02L
transformation are given by +(Q%) 90D QQ 301002 | (7)
= Q% + e 50" Q% sin(ws) (14) " Note that this new Green’s function does not have cylindri-
_2 cal symmetry. However, it still possess quadrupolar sym-

* cos(2ws) metry.
Finally we note that the ordering assumed at the begin-
ning of this paper, with? ~ 1, is not fully consistent with
the final result. This can be seen from the fact that the

2¢°—n* P - —
4263 77 cos(ws)+e{ S

+sin(ws)i4/DQD]5G
w

9 average particle motion is on surfaces of constant average
X [2%;; + a0 (Q-Q) } 6(%2/3} + €’xy energyK = const., and therefore, in general, we obtain
P ~ €@ ~ ¢, while the initial assumption was th&t ~ 1.

and B , R ) The formulation of a more refined self-consistent ordering
¢ =P 4 e Q% cos(ws) — e —5n" P sin(ws)  is being developed in Ref. [5].

,2 —
+63{ 4&? *sin(2ws) + % cos(ws) (15) REFERENCES
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Here, the expressions fors; and ps can be found in
Ref. [5].
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