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Abstract 
The required strengths of quadrupoles in a phase-space 

tomography section are significantly affected by the total 
charge per bunch. Finding settings at a high charge is 
challenging because of the non-linear nature of Coulomb 
interactions. This is further hindered by the inability to 
use thin-lens approximations and dependence on 
numerical simulations. Finally, one faces the problem that 
at some charge there simply is no solution at all. In this 
contribution we describe a simple procedure, 
implemented in the General Particle Tracer (GPT) code 
[1], which can be used to find optimal beamline settings 
in the presence of space-charge forces. The recipe 
'transports' the settings for a zero-charge solution to those 
of the desired charge and it gives an indication what the 
maximum tolerable charge is. 

INTRODUCTION 
A proper way of doing matching with space charge is 

essential for several applications. For example, one may 
consider a simple tomography line [2, 3] where the beam 
being diagnosed is a low energy one, but the charge may 
vary. Equivalently, as is the case in [2], the charge 
remains the same but the energy varies. Therefore, a 
series of pre-determined settings at which to put the 
quadrupoles would be helpful. Further, it would be even 
better if the different settings did not deviate significantly 
from the nominal solution (the solution with zero charge).  

Finding optimal settings for beamline components is 
typically a complicated problem because of the large 
number of free parameters and a corresponding large 
number of constraints. Where matching Courant-Snyder 
parameters (by varying focusing elements) is in practice 
already complicated without space charge, it becomes 
notoriously hard when non-linear space charges dominate 
the trajectories. In that case it is crucial to have some 
procedure, even if it is computationally not the most 
efficient one, which is a priori known to get the desired 
result. Without such procedure, much time is wasted in 
trial-and-error mode. This paper describes a numerical 
procedure to systematically find beam line settings in a 
space charge dominated regime. The proposed procedure 
has the additional benefits that it can easily be automated 
and that it informs the user about a potential non-
existence of the desired solution.  

EXAMPLE SET-UP 
Shown in Fig. 1 is a simple transport section containing 

three triplets (top), and corresponding rms transverse 
beam sizes in the two transverse planes (bottom). 
Assumed is a 10 MeV input beam with a top-hat 
transverse distribution with a radius of 1 mm, and a 
Gaussian longitudinal distribution with an rms-length of 

1 mm. Desired, in this specific example, is a focus in both 
transverse planes at z=1 m, a parallel beam at z=2 m and a 
focus again at z=3 m. As long as space charge effects are 
of no importance, the required settings for the 
quadrupoles Q1...Q6 can easily be found and turn out to be 
Q1=Q3=Q5=3.04 T/m and Q2=Q4=Q6=2.84 T/m. 

 

 
Figure 1: Example set-up. 

Obviously the zero charge settings are not optimal 
when space charge forces start to alter the trajectories. 
Clearly we need more focusing, but how much more? 

FINDING SETTINGS 
The example set-up has six variables: Q1…Q6. There 

are also six constraints C1…C6: Focus, Parallel, Focus at 
z=1,2 and 3 m respectively, in both transverse planes. 
Symbolically we can write that the task at hand is to find 
the values for the variables Q such that: 

 )(QfC =  (1) 

where f is evaluated by particle tracking including space-
charge effects, and processing the results such that it can 
be compared with the desired  constraints. To evaluate f 
we can use a space charge tracking code such as GPT, 
ASTRA or PARMELA. 

Linear Approach 
A typical set of Q’s will not match the constraints C. 

However, in the linear world—when space charge effects 
are of no importance—any initial guess Q0 can be used to 
find the desired Q by first-order Taylor expansion of 
equations (1): 
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where the Jacobian matrix of derivatives Mij can easily be 
obtained numerically. Unfortunately, this recipe fails 
miserably in practice when non-linear space charge is 
taken into account. 

Iterative Procedure: Newton-Raphson 
A small improvement over the recipe outlined in 

equation (2) is to use it iteratively: 

 ( ) nnnn QQfCMQ +−≈ −
+ )(1

1  (3) 

This procedure is known as Multidimensional Newton-
Raphson, known to converge quadratically: The number 
of correct digits of the solution doubles at each iteration, 
if Qn is sufficiently close to the solution. That may sound 
perfect, but again in practice it fails more often than it 
succeeds due to the difficulty in finding good starting 
values. 

Solution: Use Bunch Charge as Free Parameter 
The solution to the problem of finding good starting 

values proposed in this paper is to use the bunch charge 
itself as free parameter, even though the goal is finding 
optimal values at fixed charge. The reasoning is that the 
variables Q that match the constraints are all a continuous 
function of charge. Hence one can find the solution at 
zero charge, use that as the starting point for a solution 
with hardly any charge, use that solution in turn for 
slightly more charge, and so on and so forth. In the end 
one arrives at the solution for the desired charge. 

RESULTS 
Shown in Fig. 2 are the settings obtained for the 

quadrupole strengths Q1…Q6 of our sample set-up. The 
charge has been increased in small steps of 100 pC, 
starting from zero. At each such step, a set of Newton-
Raphson iterations is performed according to equation (3) 
starting from the result found in the previous step. Each 
function evaluation f is one obtained by one GPT run and 
the Jacobian M is obtained numerically by six additional 
GPT runs with slightly varying Q settings. 

 

 
Figure 2: Quadrupole gradients obtained as function of 
charge, where the optimal values at N·100 pC are used as 
starting conditions for the (N+1)·100 pC iteration. 

The corresponding transverse rms beam sizes are 
shown in figure 3. As expected, smooth behaviour as 
function of bunch charge is observed. 

 
Figure 3: Trajectories at stepwise increasing charge, all 
matching the required constraints. 

Limitations 
It is clear that the above procedure is not always 

applicable. For example, it will fail at the point where 
space-charge forces result in loss of laminarity. In order 
to see this, we look at the condition for laminarity as 
derived, for example, in [4, 5, 6] which we summarize 
here. For a coasting beam with an elliptical cross section, 
the electric field inside the beam (x2/a2 + y2/b2 < 1) may 
be given by: 
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where a and b are the transverse beam sizes, I=I(s) is the 
current, s the longitudinal coordinate and v=βc the 
longitudinal velocity. If we assume that the average 
kinetic energy of the transverse particle motion (or 
temperature) is much less than the electrostatic potential 
energy, then we have a laminar beam and can 
approximate the linear space charge effect by a 
defocusing quadrupole field (in both x and y planes) 
whose strength is given by: 
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where L is the drift length, I0 ≈ 17 kA (for electrons) is the 
Alfvén current, and with a similar expression for the 
vertical plane. The condition for laminarity is derived 
from the Kapchinsky-Vladimirsky (KV) (applicable to 
our example) envelope equations which are given by: 
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where εx and εy are the effective emittances in both planes. 
From the KV equations it follows that, for a round beam 
(b=a, εx=εy=ε) and for the space charge term to dominate, 
we must have: 
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or, in more practical units and using a2=εxβx  
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where εN is now the normalised emittance. 
Therefore, regarding the laminarity criterion, the idea to 

slowly increase the charge for every match gives good 
results as shown below. For most practical cases one 
wants the zero charge solution, but then with all settings 
(slightly) changed to accommodate space charge effects. 
In that case, the algorithm makes perfect sense and any 
failure is a useful indication that the desired solution 
simply doesn’t exist. 

If we look at equation (8) we find an explanation for 
the behaviour of the beam in Fig. 3, namely, for certain 
bunch charges and beam sizes we do see a loss of 
laminarity in the beam as shown in Fig. 4. 
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Figure 4: Comparison of thresholds for loss of laminarity, 
for different beam sizes. 

Simulation Considerations 
The procedure described in this paper relies on 

Newton-Raphson iterations that in turn rely on 
derivatives. Consequently, the simulation results should 

be of sufficient quality to be able to numerically 
determine the derivative. In our experience with the GPT 
[1] code, this is not a serious limitation. 

DISCUSSION 
The procedure outlined in this paper provides a method 

to find optimal beam line settings in a space charge 
dominated regime. Basically it ‘transports’ the zero 
charge solution into a regime where space charge 
significantly affects the trajectories. The procedure 
eliminates the need for a time-consuming trial-and-error 
approach, at the expense of requiring more computing 
power in a simple scheme that can be fully automated. 

The procedure outlined in this paper makes the 
assumption that the solution vector is a continuous 
function of bunch charge. It should be noted that this is 
not always the case. The parameter space where the 
recipe is applicable seems to be relatively large in 
practice, but clearly this needs further study. 

It is interesting to note that the recipe is not at all 
limited to stepwise increasing bunch charge: As long as a 
solution is a continuous function of some ‘constant’, that 
constant can be used to ‘transport’ the solution from an 
easy to obtain solution into a difficult regime. For 
example, the same effect could be achieved by starting 
with a solution for a fixed charge and an energy at which 
space charge is no longer problematic. Then it should be 
possible to reduce this energy in incremental steps until 
one has the desired solution which includes space charge. 
Alternatively, one can even find solutions of a mildly 
relativistic case–in simulation–by gradually decreasing 
the speed of light from infinity to c. 
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