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Abstract 
Experiments and numerical simulations show that high-

intensity beams composed by charged particles usually 
reach their final stationary state with a progressive 
populating of a spatial region external to its original 
border. This populating process occurs in such terms that 
beam spatial limits at equilibrium increase by an amount 
of two or three times its initial nominal size. This is 
known as halo in Beam Physics. In this way, this work 
intends to better understand the time scale of halo 
formation. The carried out investigation has shown that 
the time scale of halo formation in fact can be segmented 
in two different quantities, each one associated to distinct 
physical mechanisms. One is related with the initial non-
homogeneity naturally present in such systems, and the 
other is a result of the initial beam envelope mismatch. 
This investigation seems to be useful to design more 
efficient collimation systems and/or non-linear control 
systems for the next generation high-power accelerators. 

I TRODUCTIO  
It is well-known that beams of charged particles with 

mismatched envelopes achieve its equilibrium state with a 
not negligible growth of its emittance [1][2]. If the beam 
total energy is conserved, any increase of the beam 
emittance will be unconditionally related with an 
associated decrease of the beam envelope. This occurs 
just because energy is a constraint of beam dynamics. 
While emittance indirectly indicates how much kinetic 
energy beam earns in a certain time, the envelope 
indicates the same amount of potential energy beam 
should lose in this same interval of time, once beam 
overall energy must be a conserved quantity along the 
time. If beam is initially cold (all constituent particles 
have initial velocity equal to zero), it could be said that 
beam suffers a progressively heating while travels inside 
the accelerator structure [3]. 

In previous works [3][4], it has been spent efforts in to 
better understand beam characteristics at equilibrium. 
Analytical models have been developed to predict beam 
quantities of interest at equilibrium as the envelope ݎ௕௘௤ 
and the emittance ߳௘௤ in relation to the beam initial 
conditions. Beam initial characteristics could be 
conveniently represented in a condensed way by just the 
initial beam envelope mismatch ݎ௕(ݏ = 0) ≡  ௢, onceݎ
azimuthal symmetry is a condition attained by beam 
during its overall dynamics. In this way, in fact, the 
expressions obtained through the models have propitiated 
that beam quantities at equilibrium could be calculated by 

just specifying ݎ௢, mathematically ݎ௕௘௤ = and ߳௘௤ (௢ݎ)௕௘௤ݎ = ߳௘௤(ݎ௢). One must emphasize that energy 
conservation was a key issue to reach this goal in that 
opportunity. 

In previous works, it has been exposed that beam 
equilibrium is reached when its phase-space is 
topologically invariant with the time [3]. Initially, beam 
state is nonstationary and after some characteristic time it 
suffers an abruptly changing, directing itself toward a 
stationary state in which quantities are almost invariant. 
The time elapsed between the beam transition from an 
initial state to a final state corresponds to τ, which is 
expected to be a function of the initial conditions ascribed 
to the beam. The main difference between the initial beam 
phase-space and the final stationary beam phase-space is 
the presence of a curve region in which particles are able 
to visit. Particles at this specific region are interpreted as 
halo particles. Thus ߬ can be identified as the time scale 
of halo formation [5]. 

In this sense, the goal of this work is to better 
understand and compute the time scale ߬ in which beam 
halo is formed. Just to clarify, the system here consists of 
an initially cold, mismatched, azimuthally symmetric, and 
homogeneous beam, focused by a constant magnetic field, 
and encapsulated by a conducting pipe. Beam is perfectly 
aligned with the pipe axis, being the oscillations of its 
centroid unimportant to approach the problem. 

TIME SCALE OF HALO FORMATIO  
One way of computing the time scale ߬ is with the aid 

of the fraction of halo particles ݂. This quantity has been 
introduced in previous works [3]. In essence, fraction ݂ is 
a scalar quantity that accounts the progressive population 
of the curve region in the beam phase-space, which has 
been already commented above. Since particles at this 
region are recognized as halo particles, fraction ݂ is 
nothing more that the ratio of the number of halo particles ௛ܰ by the total number of beam particles ௕ܰ, ݂ ≡ ௛ܰ/ ௕ܰ. 
The quantity ௕ܰ is a constant in the present case. 

Note that fraction ݂ is in fact an intrinsic function of 
time ݏ. When the population process starts, this occurs 
fast. However, this is still progressive, which means that 
for each time ݏ one will have a specific and defined value 
for ௛ܰ. In this sense, the amount of halo particles is a 
function of time ݏ, ௛ܰ = ௛ܰ(ݏ), and, due to its definition, 
the fraction of halo particles also is, ݂ =  For .(ݏ)݂
computing the time scale of halo formation ߬, it seems 
clear that analyze the dynamics of fraction ݂(ݏ) is a good 
strategy. 

Figure 1 presents time behavior of beam phase-space 
and number of halo particles ௛ܰ. The results have been 
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computed through full self-consistent ܰ-particle beam 
numerical simulations. Particle interactions have been 
calculated by the Gauss Law method [5]. The total 
number of particles employed was ܰ = 10,000 and the 
initial beam mismatched was ݎ௢ = 1.5. Time quantities 
are measured in units of ඥߢ௭௢, where ߢ௭௢ is the 
coefficient of constant magnetic focusing. 

While Figure 1a and Figure 1c show respectively the 
initial beam phase-space, at ݏ = 0, and the final beam 
phase-space, at a time after ݏ ≥ ߬, Figure 1b shows beam 
phase-space at some intermediate time. The sequence of 
beam phase-space portraits Figure 1a-c illustrates the 
previously commented populating process. It can be also 
observed that after a characteristic time ߬, beam phase-
space structure becomes invariant with the time ݏ. This 
signals that possibly beam equilibrium was reached [3]. 

 
Figure 1: Beam phase-space dynamics inside the focusing 
channel. Panels (a) and (c) show beam phase-space 
respectively at ݏ = 0 (initial nonstationary state) and at 
some time ݏ ≥ ߬ (final stationary state). Panel (b) shows 
beam phase-space in an intermediate time. Panel (d) 
shows the time dependence of halo particles ௛ܰ. All 
results have been obtained through numerical simulation 
with an initial mismatch of ݎ௢ = 1.5. 

But not only beam phase-space becomes geometrically 
invariant. Particle density in each region of beam phase-
space also becomes independent of time. This could be 
verified analyzing ௛ܰ(ݏ) present in Figure 1d. Observe 
that after some time, to say ߬ ≅ 401, ௛ܰ(ݏ) becomes 
constant, with a value specified by ௛ܰ(ݏ ≥ ߬). Since 
dimensions of curve region are almost invariant, then halo 
particle density in phase-space is approximately constant 
in this place. In this way, with this condition and 
considering the previous commented geometric 
invariance, after the time scale ߬, beam is topologically 
invariant, achieving equilibrium [5]. Established this 
concepts, one is able to quantitatively determine the time 

scale of halo formation ߬ with a simplified model and 
invoke interpretations about its nature. 

THE MODEL 
Last section of this work has shown that the complex 

process of population of the curve region by beam 
particles can be compactly described accounting ௛ܰ(ݏ). 
Qualitatively, it is this population process that conducts 
beam to its equilibrium state, being responsible by beam 
emittance growth and envelope decay. How fast 
equilibrium approaches can be thus obtained by analyzing 
at each time how fraction of halo particles ݂ is changing. 

It is clear that fraction ݂ depends of time, since the 
number o halo particles ௛ܰ is a function of time. Since 
beam evolves with an azimuthal symmetry constraint, the 
only information about its initial state is ݎ௢. Then, 
functionally fraction ݂ depends ݂ = ,௢ݎ)݂ (1) .(ݏ

Figure 1d shows that ௛ܰ and as a consequence ݂ has 
well-defined behavior along time ݏ. This suggests that an 
analytical function could be assigned to fraction ݂. Once ௛ܰ(ݏ) has an inflection point around ߬, a sigmoid 
function, which is widespread used to model transfer 
functions of neurons in artificial intelligence, seems to be 
suitable ݂(ݏ) = ܽ1 + ܾ݁ି௖௦ + ݀. (2)

In principle, this expression for fraction ݂ has 4 free 
parameters, which could be obtained through direct fitting 
of equation (2) to the simulation results of Figure 1d. 
However much more information could be acquired 
studying cases limits and making use of previous results 
already obtained by us about the matter. 

Objectively, once beam is initially cold, thus at the ݏ = 0 limit lim௦→଴ (ݏ)݂ = 0, (3)
which means no particles at the curve phase-space region 
at the initial beam state. Also, at equilibrium, the result 
produced by equation (2) must match with ݂(ݏ ≥ ߬) lim௦→ାஶ (ݏ)݂ = ݏ)݂ ≥ ߬), (4)
a quantity obtained with models developed and presented 
in previous published works [3][4]. 

Applying the conditions present in equations (3) e (4) 
to the equation (2), two equations relating two parameters 
– which initially have been supposed free – are obtained. 
The equations are in the form ݀(ܽ, ܾ) and ܽ(ܾ, ݏ)݂ ≥ ߬)). 
With these last equations, equation (2) assumes the format ݂(ݏ) = ቀ1 + 1ܾቁ ݏ)݂ ≥ ߬)1 + ܾ݁ି௖௦ − ݏ)݂ ≥ ߬)ܾ , (5)

being just ܾ and ܿ parameters to be still obtained. Note 
that these parameters in fact are functions of ݎ௢, as ݂ also 
is. It is important emphasize that fraction ݂(ݏ ≥ ߬) is a 
quantity determinable with models described in 
references [3][4]. Nevertheless, experience show that ܾ is 
not an impacting parameter in ݂(ݏ). Without much 
discussion, parameter ܾ can assume ܾ = 750, for a wide 
range of beam initial mismatches. Therefore, the only one 

Proceedings of PAC09, Vancouver, BC, Canada FR5PFP052

Beam Dynamics and Electromagnetic Fields

D03 - High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling 4425



free parameter in essence is ܿ, which can be promptly 
determined by fitting equation (5) to the numerical 
simulation results, for each initial mismatch ݎ௢. The 
performance of the model represented by equation (5) in 
to describe results of numerical simulations is shown in  
Figure 2. The according is reasonable for both 
semicircular and semi-elliptical approximations [4] to the 
fraction of halo particles ݂(ݏ ≥ ߬). The value of ܿ for this 
mismatch is ܿ(ݎ௢ = 1.5) = 0.02125. 

 
Figure 2: The fraction ݂ computed through numerical 
simulation (black line) and the developed model, using 
semicircular and semi-elliptical approximations 
(respectively green and cyan lines). Beam initial 
mismatch of ݎ௢ = 1.5 and ܿ(ݎ௢) = 0.02125. 

To determine ߬, one has to establish a critical value as ݂(ݏ = ߬) = ܿ௖௥௜ ∙ ݏ)݂ ≥ ߬), (6)
in which ܿ௖௥௜ is a critical coefficient here chosen as ܿ௖௥௜ = 0.9. Note that if equation (2) was only an 
exponential, the critical value would be 1 − 1/݁. 

Inserting equation (6) into equation (5) and solving for 
the time scale ߬ one obtains ߬ = − 1ܿ ln ൬ 1 − ܿ௖௥௜1 + ܾܿ௖௥௜൰. (7)

Considering the previous numeric values for ܾ, ܿ and ܿ௖௥௜, 
equation (7) returns ߬(ݎ௢ = 1.5) ≅ 404, which is much 
similar with the value calculated in Figure 1d, being the 
slight difference due to the fluctuations normally present 
in the results provided by numerical simulations. Figure 3 
presents ߬ as a function of other values of ݎ௢, which are 
usually of interest in beam physics. 

 
Figure 3: Dependence of the time scale of halo formation ߬ as a function of the initial beam mismatch ݎ௢. Note the 
exponential behaviour of ߬ in relation to ݎ௢. 

Expression (7) can be still segmented in two distinct 
quantities ߬ = − 1ܿ ln(1 − ܿ௖௥௜) − 1ܿ ln ൬ 11 + ܾܿ௖௥௜൰ = ߬ఎ + ߬ఒ, (8)

in which explicitly ߬ఎ ≡ − 1ܿ ln(1 − ܿ௖௥௜) e ߬ఒ ≡ − 1ܿ ln ൬ 11 + ܾܿ௖௥௜൰ (9)

Numerically, ߬ఎ(ݎ௢ = 1.5) ≅ 108.37 and ߬ఒ(ݎ௢ = 1.5) ≅295.85. Numerical results for ܾ, ܿ, ߬, ߬ఎ and ߬ఒ for many 
values of ݎ௢ are presented in Table 1. Results for ݎ௢ = 1.1 
and ݎ௢ = 1.2 are not calculated once computing time of 
numerical simulations is too long. 
Table 1: The time scale of halo formation ߬ for many 
values of initial beam mismatch ݎ௢. ݎ௢ ܾ ܿ ߬ = ߬ఎ + ߬ఒ ߬ఎ ߬ఒ = 1.0 = 750 = 0 → ∞ → ∞ = 0 = 1.3 = 750 = 0.01089 ≅ 809.80 ≅ 211.44 ≅ 598.36= 1.4 = 750 = 0.01665 ≅ 529.65 ≅ 138.29 ≅ 391.36= 1.5 = 750 = 0.02198 ≅ 401.21 ≅ 104.75 ≅ 296.46= 1.6 = 750 = 0.03212 ≅ 274.55 ≅ 71.68 ≅ 202.87= 1.7 = 750 = 0.04142 ≅ 213.01 ≅ 55.59 ≅ 157.32= 1.8 = 750 = 0.05244 ≅ 168.16 ≅ 43.90 ≅ 124.26= 1.9 = 750 = 0.06613 ≅ 133.35 ≅ 34.81 ≅ 98.53 = 2.0 = 750 = 0.07516 ≅ 117.33 ≅ 30.63 ≅ 86.69 

CO CLUSIO S 
The fraction o halo particles ݂ has in a condensed way 

much information about beam phase-space dynamics. 
Specially beam route to equilibrium. Fraction ݂ not only 
allows to determine beam macroscopic equilibrium 
quantities, such as emittance ߳(ݏ ≥ ߬) and envelope ݎ௕(ݏ ≥ ߬), but also to acquire information about the time 
scale of halo formation ߬. The model here presented has 
propitiated to compute ߬ in a systematic way. Also, the 
model has identified that in fact ߬ is composed by two 
distinct quantities, ߬ఎ and ߬ఒ. The physical meaning of 
these quantities will be addressed in an extended version 
of this paper, but it is possible to advance that the first one 
is a result of the initial spurious inhomogeneity naturally 
associated to homogeneous beams and the second is a 
result of large resonant islands induced by the initial beam 
mismatch ݎ௢. 
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