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Abstract

This work analyzes the dynamics of inhomogeneous,
magnetically focused high intensity beams of charged par-
ticles. Initial inhomogeneities lead to density waves prop-
agating transversely in the beam core, and the presence of
transverse waves eventually results in particle scattering.
Particle scattering off waves in the beam core ultimately
generates a halo of particles with concomitant emittance
growth. Emittance growth indicates a beam relaxing to its
final stationary state, and the purpose of the present paper
is to describe halo and emittance in terms of test particles
moving under the action of the inhomogeneous beam. To
this end an average Lagrangian approach for the beam is
developed. This approach, aided by the use of conserved
quantities, produces results in nice agreement with those
obtained with full� -particle numerical simulations.

INTRODUCTION

Magnetically focused beams of charged particles can re-
lax from non-stationary to stationary flows with associ-
ated emittance growth and concomitant halo formation [1].
Gluckstern [2] showed that initial envelope oscillations
of mismatched homogeneous beams induce formation of
large scale resonant islands beyond the beam border [3, 4]:
beam particles are captured by the resonant islands result-
ing in emittance growth and relaxation. A closely related
question concerns the mechanism of beam relaxation and
the associated emittance growth when the beam is not ho-
mogeneous, as frequently happens in beam transport chan-
nels [1, 5]. On general grounds of energy conservation
one again concludes that beam relaxation takes place when
the coherent fluctuations of beam inhomogeneities are con-
verted into microscopic kinetic energy, as shall be detailed
along the paper.

Recent investigation of inhomogeneous beams shows
that relaxation comes about as a consequence of particle
scattering off density waves in the beam [6]. Scattering
particles initially move in-phase with the macroscopic den-
sity fluctuations, drawing their energy from the propagat-
ing wave fronts and converting it into microscopic kinetic
energy. For ultra cold, or crystalline beams, the process
amounts to the mechanism of pure wave breaking, where
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particles are firstly coherently accelerated to the velocity
of the waves and then abruptly ejected from high density
peaks. At the moment of ejection, spatial dependence of
oscillatory frequency, a needed feature for wave breaking,
has already turned the core into a highly incoherent state
[7, 8].

In the present paper we focus attention on the case of
space charge dominated but warmer beams. Under these
conditions, resonant particles are already present at initial
times due to thermal spread, and the entire relaxation pro-
cess is smoother. In contrast to the crystalline case, here
particles gain energy while the core still displays coher-
ence. In any case, ejected particles form a low density halo
around the beam core, which ultimately increases beam
emittance and relaxes the dynamics. Due to its low density
the ejected population can be very accurately described as a
set of test particles. It is thus of importance to describe the
motion of test particles as they are driven into the halo by
core fluctuations. The core itself generically behaves as an
oscillatory drive, the details of which depend on the partic-
ular instance investigated. While in homogeneous cases the
core is occasionally modeled as a breathing flat top charge
distribution, corresponding models for oscillating inhomo-
geneous beams are less frequent. We perform our investi-
gation with aid of average Lagrangean techniques.

THE MODEL AND ANALYSIS

Considering full azimuthal symmetry, one can use
Gauss’s law in order to write the governing equation for
any particle in the beam [7, 9, 10, 11],

��� � �� � �
����

�
� (1)

primes indicating derivative with respect to the longitudinal
� coordinate which for convenience we shall also refer to
as “time”. � is the focusing factor � � ��, where � is
the axial, constant, focusing magnetic field and ���� is the
beam charge (actually, the beam “perveance”) up to radial
position �.

Density Oscillations of the  Core

We recall that we are interested in slightly thermal beams
where particles begin to move away from the core while it
still oscillates coherently.

Since the core is assumed to be a fluid with discrete ran-
dom motion, the amount of charge that a core particle sees
at any time equals the charge initially seen at � � �. In
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other words, if a core particle evolves from �� at � � � to
a new position � at time �, we consider ���� �� � �����.
�� is in fact the Lagrangian coordinate of the core particle
[12], which means that the solution to Eq. (1) can be writ-
ten parametrically in terms of �� in the convenient form
� � ����� ��. Once again we emphasize that the amount
of charge ���� seen by the fluid element inside the region
� � � � ���� remains unaltered at �����, independently
of time �. This is of fundamental importance since from
Gauss’s law this is the charge that exerts the force on the
fluid element.

Expression (1), adapted for core particles according to
the preceding comments, can be readily obtained from the
single-particle Lagrangian �

���� ��� �
���

�
� �

��

�
������ ����� (2)

with help of Euler-Lagrange equations. In our system one
has a multitude of �� particles, as mentioned, and the full
transverse Lagrangian takes the form

	 �

�
���� ��� 
���� �

���� (3)

where what one is doing is to multiply the single-particle
Lagrangian at coordinate � by the number of particles
evolving from ��� � �� � �� to ���� � �, 
��������, and
integrating over all possible initial conditions. Recalling
that since we are dealing with core particles, the amount of
charge seen by a particle at any time � equals that at � � �.
This explains the presence of the term ����� - computed at
�� - in Eq. (2).

At the present point we would like to invoke average La-
grangian techniques [13]. The purpose here would be to
produce an average formalism that could provide an easy
way into obtaining the nonlinear frequency and the ampli-
tude of the dominant oscillatory mode of the core. With
this approximate core dynamics serving as a drive for test
particles, we shall finally attempt to investigate halo for-
mation and the corresponding basic features of the relaxed
state.

The general idea of the average Lagrangian is to suppose
a trial shape for the density
 � 
��� �����, where � depen-
dence comes through an amplitude factor � � ���� to be
determined. Then one proceeds to integrate Eq. (3) over
�� and apply Euler-Lagrange method of stationary action
to obtain a governing equation for the density fluctuation
amplitude ����. This will complete the description for the
core dynamics.

As initial condition we impose a parabolic type pertur-
bation of the form 
�� � ��� � 
�	
 � � �������� � 
��
(with 
�� � ��� � �), where 
� is the average beam den-
sity and �� is the beam core radius. Then we assume that as
the density wave evolves in the core it can be represented
in the form


��� ����� � 
�

�

 � ����

�
�
��

���
� 


��
� (4)

where now we let the amplitude to become a function of
time �. The ansatz represents a compressive-rarefactive
wave and gives an accurate account of the density fluc-
tuations for short times following the initial state. Since
the quickly evaporated particles are the ones that absorb
maximum energy and define the halo boundaries in phase
space, usage of expression (4) is justified. We also choose
�� � ��� so particles at beam border are at equilibrium.

With help of the ansatz and all steps detailed above, we
can fully integrate Eq. (3) with respect to � and make use
of Euler-Lagrange equations applied to the remaining func-
tion � � ���� to obtain a closed expression for the ampli-
tude

������ � � ������ ������� (5)

where � is an involved function that can be nevertheless
written in terms of � and ��.

Test Particle Orbits

As for test particles, Eq. (1) is applied with the re-
striction that ���� contains only the core charge. This is
equivalent to our assumptions on the diluteness of the halo,
whereby the core drives test particles but is not acted upon
by the latter.

As they interact with the beam, test particles feel the
space charge action of the core up to their current posi-
tion � � ����. In particular, test particles outside the beam
see constant charge. Therefore the governing equation for
those test particles can be written as

��� � ��� �

�
�

����
�
�������

�
������

��
�

�
 � � ��

��� �
 � � ��
� (6)

Equations (5) and (6) shall be solved simultaneously to
obtain the dynamics of test particles.

ESTIMATES VERSUS FULL
SIMULATIONS

Estimates Based on Conserved Quantities and
Test Particle Dynamics.

The � dynamics, coming from a time independent 1D
Lagrangian, is completely integrable and periodic. Test
particle motion can be thus represented in terms of a con-
venient Poincaré plot, where we record the pair of values
���� and ����� each time ���� cycles one period.

One can also rescale radiuses, perveance and focusing
factor so as to work with � � � � �� � 
 [14]. If in ad-
dition one selects ��� � �� � �� � ��� and ����� � � as
typical initial conditions at beam entrance, one obtains the
dynamics for the test particles as the scattered plot shown
in the Fig. 1.

Except for a resonance bubble near the origin, test parti-
cles distribute evenly over a limited region of phase space
delimited by the orbit of the fastest test particles at � � �.
The boundary is the thick line present in Fig. (1). One
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Figure 1: Test particle dynamics (scattered dots) and
bounding energy curve (thick line) for �� � ���.

key assumption of the model is that the halo will be ho-
mogeneously distributed over the region bounded by this
maximum energy curve.

Test particles calculations compare extremely well with
full simulations of Fig. 2.

Figure 2: Full simulations displaying a snapshot of the
phase space occupied by �� � 
���� macroparticles at
� � ����, for�� � ���. The thick line representing bound-
ing energy is once again displayed.

What remains unknown up to the present point is the
halo normalization - or the total number of halo particles
- within the bounded domain. Only full knowledge of the
distribution, layout and normalization, enables to calculate
several quantities for the relaxed beam, including the emit-
tance, an instrument of choice for beam diagnostics.

The number of halo particles can be obtained throught
a combination of energy conservation, envelope equation
and Poission equation. Details can be found in Ref. [15].
Results for the emittance � indicating good agreement be-
tween analytical approximations and full simulations can
be found in the Table.

Table 1: Comparison of full simulations and analytical esti-
mates for asymptotic states based on test particle dynamics
and conserved quantities.

�� ����	
����	 ���
�	�����

0.2 0.053 0.051
0.4 0.106 0.099
0.6 0.152 0.140
0.8 0.211 0.175

FINAL REMARKS

We employed average Lagrangean techniques to esti-
mate saturation of wave breakin in intense inhomogeneous
beams. Test particles are launched under the action of fields
calculated with the average techniques, and estimates com-
pare well with full particle simulations.
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