
ANISOTROPIC KINETIC AND DYNAMIC PROCESSES IN
EQUIPARTITIONED BEAMS∗

Wilson Simeoni Jr.† , IF-UFRGS, 91501-970, Porto Alegre, RS Brasil

Abstract

The purpose of this paper is to propose one definiton of
the anisotropic equipartition [1]. Anisotropic equipartition
corresponds to a phase space density uniform on the sur-
face invariant of the ξ, where ξ is the ratio of oscillations
energies in the x and y directions, a version of the ergodic
hypothesis where the ξ invariant play the role of the con-
served energy [2]. In the state of anisotropic equipartition,
the beam temperature is stationary, the entropy grows in the
cascade form, there is a coupling of transversal emittance,
the beam develops an elliptical shape with a increase in its
size along one direction and there is halo formation along
one direction preferential.

INTRODUCTION

Space-charge interactions in high-intensity linear accel-
erator can lead to equipartitioning of energy between the
degrees of freedom. The question then is whether an
anisotropic system of collisionless particles coupled by
long-range space-charge forces will equipartition and, if so,
how. In anisotropic beams, the emittance and/or external
focusing force strength are different in the two transverse
directions. Ikegami [3] deal with effects of anisotropic of
beam cores on halo dynamics. Recently, other news phe-
nomena caused by anisotropy demonstrated by Hofmann et
al. [3].

We are working toward quantifying the relationship be-
tween the anisotropy of the beam and the equipartition.
The equipartition of beam is driven for anisotropics pro-
cesses. In plasmas with strongly anisotropic distribution
functions, collective instabilities may develop if there is
sufficient coupling between the degrees of fredom. Previ-
ous studies have mostly focused on the electrostatic Harris-
type anisotropic-driven instability for beams [2]. The term
equipartition broadly refers to the ergodic poperty of multi-
dimensional Hamiltonian systems, which tend to to dis-
tribute uniformly over the phase space surface of constant
energy. The conservation of energy plays the fundamental
role in classical equilibrium thermodynamics. The temper-
ature is then uniform. The term “turbulent equipartiton ”
was introduced by Yankov [2] in order to describe the tur-
bulent relaxed state, in which the system assumes a uniform
distribution on the surface of constant invariants respected
by turbulence. Previous examples of TEP in plasmas
physics were considered by Yankov [2] and Isichenko et
al. [2].We believe that the problem of anisotropic equipar-
tition in linac should be solved in the same spirit.
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ANISOTROPIC EQUIPARTITION
We consider an axially long unbunched beam of

ions of charge q and mass m propagating with av-
erage axial velocity βbcêz along an uniform linear
focusing channel, self-field interactions are electro-
static. We consider the parabolic density beam (nb =
2Nb/πrxry

[
1 − x2/r2

x − y2/r2
x

]
) where Nb is the axial

line density, rx =
√

6〈x2〉 and ry =
√

6〈y2〉 are ellip-
sis semi-axes rms, in space-charge dominated regime [1].
The envelope of the beam is an elliptical cross-section
with rms radii rj (henceforth, j ranges over both x and
y) that obey the rms-KV envelope equations [1], r

′′
j +

κ2
0rj − 2K

rx+ry
− ε2j

r3
j

= 0. Here, K = q2Nb/π2ε0γ
3
b β2

b mc2

is the dimensionless perveance of the beam and κ0 is
represented constant focusing force. There is a solution
of the envelope equations for which rj(s) = rb0 =
[(

K + (K2 + 4κ2
0η

2)1/2
)
/2κ2

0

]1/2
, where η = εx/εy,

this corresponds to the so called matched solution. εj is
rms-emittance of the beam along the j-plane. The εj =√〈j2〉〈j′2〉 − 〈jj′〉2 was calculated analytically, following
a model proposed to Simeoni [1]. The emittance is given
by :
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(1)
the result is easily transformed to the y plane interchanging
rx and ry . A is the mismatched amplitude of oscillato-
ries modes beam. We introduce the following anisotropy
variables: the ratio emittance η, ratio of the envelope beam
χ = rx/ry , and the mismatch factor ν = rx/rb0 = ry/rb0.
We launch the beam with K = 3, κ0 = 1, ν = 2.4, A =
2.0, rj0 = νrb0, rx0 = ry0 and η = 1 initially.

In the proceeding [1], we showed that there is a cou-
pling of transversal emittance, the beam develops an ellip-
tical shape with a increase in its size along one direction
and there is halo formation along one direction preferen-
tial, as consequence of resonant phase mixing [2]. For large
beam size-rms mismatched and initial ratio envelopes beam
χ = 1, the ratio of oscillations energies in the x and y di-
rections remaines constant, ξ = (ryεx)2/(rxεy)2 = 1, [3].
As illustrated in Fig. 1 beam fast suffers anisotropization
characterized for discontinuous variations in χ and η [2].
The anisotropy leading to coupling resonance in the pres-
ence of nonlinear space-charge forces was suggested as a
possible approach to the equipartitioning question [3].

Emittance is the area in phase space occupied by the par-
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Figure 1: The ratio of oscillations energies ξ and
anisotropic ratios, χ and η in beam propagation.

ticles of the beam. The maximum emittance of a beam that
a system can accept is called the acceptance of the sys-
tem a [3]. We define the RMS acceptance as the maximum
square root of the aj =

√〈j2〉〈j′2〉 − 〈jj′〉2. The sec-
ond moment term 〈jj′〉2 represents a correlation between
j and j

′
that exists when the beam envelope is converg-

ing or diverging. At a waist, this correlation is minimized
and the second moment term is zero [1]. Thus, the accep-
tance reduces to maximum of the ãj =

√〈j2〉〈j′2〉.With
the help of the Lyapunov functions [3] we can construct
an invariant beam area. A system, dx(t)

dt = f(x), takes the

form dx(t)
dt = − dL(x)

dx , if to an equilibrium x0 the Lyapunov

function L satisfies the conditions L(x0) = 0, dL(x)
dt ≤ 0

for x �= x0 and L is a smooth function of x in some neigh-
borhood of x0, details in [1]. A definition of the Lyapunov
function of the acceptance L(ãj) would be :

L = α
(
1 −

√
1/ξ
) ã2

x

2rx
− ρ (1 + 1/η)

ã2
x

2
(2)

− α
(√

ξ − 1
) ã2

y

2ry
− ρ (1 + η)

ã2
y

2

This function is dependent of the ratio of the average ex-
ternal focusing force to the space-charge force α and of
the space-charge strength ρ. To ãx0 = 0 and ãy0 = 0,
L satisfies the condition L(ãx0, ãy0) = 0. To the issue
dL(ãj)

ds ≤ 0 mentioned above the evolution of the L(ãj)
Lyapunov function represented by blue line (top graphic)
in Fig. 3 can be regarded as a proof. As the Lyapunov
functionc satisfies the conditions, we can apply equation
dãj(s)

ds = − dL(ãj)
dãj

obtaining the following acceptance dy-
namics equations:

dãx

ds
= −α

(
1 −

√
1/ξ
) ãx

rx
+ ρ (1 + 1/η) ãx (3)

dãy

ds
= α

(√
ξ − 1

) ãy

ry
+ ρ (1 + η) ãy (4)

The resulting acceptance equations contain two terms: the
first term describe acceptance changes associated with
transfer of energy between the two planes; the second
describes acceptance changes associated with anisotropic
processes.The general solutions to the equations (3) and (4)

are given by:

ãx = c1e
∫ [

α
rx

(√
1/ξ−1

)
+ρ(1+1/η)

]
ds

, (5)

ãy = c2e
∫ [

α
ry

(√ξ−1)+ρ(1+η)
]
ds

(6)

where c1 and c2 are arbitrary constants determined by ini-
tial values.The oscillations beam envelope perturb nonlin-
ear space-charge force yields a correlation between par-
ticle position and transverse momentum. Thus, the sec-
ond moment term 〈jj′〉2 is not zero and the RMS ac-
ceptance becomes aj =

√〈j2〉〈j′2〉 − 〈jj′〉2. Therefore
the equipartition and the variable anisotropy are given by
ξ = (ryax)2/(rxay)2 and η = ax/ay, respectively. Thus
the equations (3) and (4) are transformed by :

dax

ds
=

(−α

rx
+ ρ

)
ax +

(
α

ry
+ ρ

)
ay, (7)

day

ds
=

(
α

rx
+ ρ

)
ax +

(−α

ry
+ ρ

)
ay (8)

Jameson has derived identical equations [3] to the question
of equipartioning in linear accelerator. The general solu-
tions to the equations (7) and (8) are given by [1]:

ax = −
{

c3

∫ [(
e
2ρs+α

∫ (− 1
χry

+ χ
rx

)
ds
)

(α + ρrx)

1
rx

]

ds + c4

}{
e

α
∫ ( 1

χry
− χ

rx

)
ds
}

+ c3e
2ρs (9)

ay =

{

c3

∫ [(
e
2ρs+α

∫ (− 1
χry

+ χ
rx

)
ds
)

(α + ρrx)

1
rx

]

ds + c4

}{
e

α
∫ ( 1

χry
− χ

rx

)
ds
}

(10)

where c3 and c4 are arbitrary constants determined by ini-
tial values. We solve the integrals in (5) and (6), (9)
and (10) to obtain the acceptance evolution without and
with correlation, respectively. We launch the beam with
α = 0.00001 and ρ = 0.25 in space-charge dominated
regime. c1 = 0.22360 and c2 = 0.22360, c3 = 0.44721
and c4 = 0.22360 are determined by initial values ãx0 =
ãy0 = 0.22360, and ax0 = ay0 = 0.22360. The corre-
sponding evolution of the rms-emittance (1) and the rms-
envelope are used. The acceptance evolutions are shown in
Fig. 2. ãx and ãy , respectively, remain constant with very
small oscillations because ãx and ãy are beam area projec-
tions derived from Lyapunov functions (2). However, it is
observed coupling in ax and ay caused for space charge
driven core-core resonance together with single-particle
resonances [1, 3].This coupling is characterized by the en-
ergy exchange between the directions. Energy/acceptance
exchange requires resonant coupling. The relaxation of the
system is due to a condition of resonance and it may happen
that the relaxation stops because there is no resonance any-
more. After the energy to have been redistributed among all
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Figure 2: Evolution of the beam acceptance without (ãx

and ãy), and with (ax and ay) correlation between particle
position and transverse momentum.

the degrees of freedom, the beam achieve “thermal” equi-
libration.

To characterize the “thermal” equilibrium we analyze the
dynamics of the Lyapunov function (2), and of the temper-
ature and entropy of the beam. The “temperature” Tj of

the j-th degree of freedom can be expressed as Tj =
ma2

j

Kbr2
j

,

where m is the mass ions beam and Kb is the Boltzmann’s
constant [3]. This formula shows that envelope rj and ac-
ceptance aj variations cause temperature variations. For a
system with “non-equilibrium temperatures ” that is oscil-
lating anisotropicly around Teq, the equilibrium tempera-
ture can be aproximated by the arithmetric average of the
Tj :

Teq =
m

2Kb

(
a2

x

r2
x

+
a2

y

r2
y

)

(11)

With the equilibrium temperature Teq for the 2-D beam
model, the entropy change near thermodynamic equilib-
rium due to a temperature balancing process may then be
written as

dS

ds
=

Kb

2

[
(Tx − Ty)2

TxTy

]

(12)

Obviously, the entropy S(s) remains unchanged in the case
of temperature equilibrium while increasing during tem-
perature balancing. The basis for the dynamics behaviour
of the entropy is the relation between the acceptance, the
beam temperature and the envelope. Beam transport with-
out an increase of entropy are thus possible if either the
beam stays round throughout its propagation. We launch
the beam with m = 1, rj0 = 0.43616 and aj0 = 0, 22360,
consequently Tj0 = 0.26282 initially, and integrate the en-
tropy equation (12) up to s = 200.0. The dynamics S
(bottom), Teq (top) and L (top) are shown in Fig. 3. L is a
monotonically decreasing function with respect to s for so-
lutions ãj . L becomes stationary in the limit s → ∞. Teq

oscillates after steady with small fluctuations and S grows
by cascades. The concept of entropy cascade is the key
agent in the heating and relaxation of the beam [3]. We
observe to have different regimes. There is first a phase of
violent relaxation on a time scale s = 50 leading to a quasi-
stationary state. This phase is followed by a thermalization
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Figure 3: Evolutions of the temperature Teq (top), Lya-
punov function L (top) and entropy S (bottom) obtained
of the equations (11), (2) and (12), respectively.

leading to the Teq stationary on a time scale s = 120 due
to the wave-particle interaction [3]. We consider for in-
termediate times s = 50 to s = 120 that the distribution
function is a quasistationary solution of the Vlasov equa-
tion that slowly thermalizies via space-charge. The study
this dynamic will be considered in a future work.

CONCLUSIONS
Based on turbulent equipartiton [2] we propose the

anisotropic equipartition. In future it is necessary to find
experimental evidence of the anisotropic equipartition.
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