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Abstract 

The University of Maryland Electron Ring (UMER) is 
designed for operation over a broad range of beam 
intensities, including those normally achieved only in 
linacs [1]. This is possible thanks to a combination of 
low-energy (10 keV) electrons and a high density of 
magnetic quadrupoles (72 over an 11.5 m circumference) 
that allow operation from 0.5 mA to 100 mA; that is, from 
the emittance dominated to the highly space charge 
dominated regimes. We present results of basic beam 
centroid-motion characterization, including measurements 
of the momentum compaction factor and natural 
chromaticity and dispersion.  These are compared with 
results from computer simulations employing the code 
ELEGANT [2]. We discuss the techniques and challenges 
behind the measurements with fast beam-position and 
wall-current monitors. 

INTRODUCTION 
Working with a 10 keV, bunched, space charge 

dominated electron beam brings with it many special 
issues, including challenges in injection, matching, effect 
of the earth’s field, timing and longitudinal beam blow up 
[3].  UMER is sufficiently different from most electron 
storage rings, almost all operating at relativistic beam 
energies, so that standard beam measurement and tuning 
technologies cannot be used or have to be creatively 
modified.  The 0.6mA beam operates in the emittance 
dominated regime, albeit with an incoherent space charge 
tune shift well beyond the Laslett limit.  The 6, 20, 80 and 
100 mA beams currently available for experiments are 
well into the space charge dominated regime with 
incoherent tune shifts in multiple integer values [3][8].  
Understanding the physics of these operating regimes is 
the motivation for building and operating UMER [1].  
Work reported here focuses on the 0.6, 6 and 20 mA 
beams, treating the coherent beam effects from the 
approach of single particle dynamics.  Recent progress in 
beam tuning is reported elsewhere [5].  This paper 
presents recent measurements of natural chromaticity, 
dispersion, momentum compaction and a comparison of 
results with the ELEGANT code, where space charge is 
not included.  Simulations with full space charge are in 
progress using the WARP Code [5]. 
____________________________________________ 
#Work supported by US Department of Energy Office of 
High Energy Physics, and by the US Department of 
Defence, Office of Naval Research. 

CHROMATICITY AND DISPERSION 
The natural chromaticity is defined by [4],                   
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where 0/p pδ = Δ  is the fractional deviation from the 
UMER momentum, p0 , corresponding to the 10 keV 
operating energy.  All values of momentum are computed 
from the well-known formula (pc is in units of keV), 
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where E0 is the electron rest mass and T is the UMER 
operating kinetic energy, which is measured to ≤ .01%. 

 Because of space charge effects, the number of turns 
that can be stored in UMER are limited; the best case 
being ~ 200 turns with the 0.6mA beam, dropping off 
rapidly with beam current.  Thus common measurement 
techniques requiring more than 1000 turns are not 
possible.  However, the first 10 turns at 0.6, 6, and 20 mA 
can now be tuned to be essentially lossless before beam 
end erosion begins to be an issue [6].  Consequently, 
tunes and equilibrium orbit values are determined by 
measuring horizontal and vertical position on four 
consecutive turns at each of the 14 beam position 
monitors (BPM’s) distributed around the ring.  The 
displacement (horizontal or vertical) xn at each BPM 
includes contributions [left to right in equation (3)] from 
the equilibrium orbit, dispersion, betatron function and 
BPM error [4], 

           eo co n BPMx x x xδ β ε= + + +     (3) 
Assuming that xδ and εbpm are small and setting the phase 
advance per turn, μ = 2πν, the displacement amplitude on 
the nth turn is xn = xeo + xnβ , where 
             ( ) 0 0cos 2 sin 2 sin 2nx x xβ πν α πν β βν′= + +            (4) 
α and β are the usual Courant and Snyder parameters and 
x0 and x’ the initial position and slope.  After some 
extensive algebra, one can eliminate x0, x0’, α and β to get 
the “four turn” equation for the fractional tune [7], 
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Unfortunately, equation (5) is very sensitive to errors due 
to noise and when the measured position of turn’s xn+1 
and xn+2 are close to each other. Measurements consist of 
recording position on 4 consecutive turns horizontally and 
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vertically at each BPM and then averaging over the 14 
(horizontal or vertical) tune values obtained by applying 
equation (5).  Values for νx and νy outside the range of 

avgν σ± , where σ is the standard deviation, are discarded, 
and a new νavg and σ are computed.  

The fractional part of the tune can also be measured by 
means of the Fast Fourier Transform (FFT).  A BPM 
signal for some 40 turns is averaged over 16 ring cycles 
and the FFT of the signal is measured with a high band 
width oscilloscope.  The tune is extracted from the 
observed upper or lower sideband. 

 
Tunes (integer and fractional part) are also extracted 

directly from position data from the BPM’s. The position 
value for the nth turn at a BPM located at si can be written 
using an alternate expression for the betatron motion from 
equation (4) as [4] 
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1
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The difference between the nth and mth turns at the ith 
BPM is,  
           ( )cos[ ( )] sin ( )mi ni i ix x A s B sνφ νφ− = +            (6) 
where it is assumed that the β value is the same at all 
BPM’s (per the UMER design) and A,B and ν are 
obtained by fitting the xmi – xni values from the 14 BPM’s. 
Under the assumption that the phases f(si) are an integer 
number of lattice sections, they are given by f(si) =2π/I, 
i=1 to 18, the number of ring sections.  

To obtain the dispersion, D(si) at the ith BPM using the 
relation x = D(s)δ(T), it is necessary to measure the 
equilibrium orbit at each BPM. The derivation of the four 
turn fractional tune formula (5) also provides an 
expression for the equilibrium orbit [7],  
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for the n=1 case. While less sensitive to error than 
equation (5), equation (7) still has accuracy issues when 
all four turn-by-turn positions at a given BPM are small.   
 
If the xeo values are recorded at all BPM’s at the operating 
momentum po for 10 keV and if the kinetic energy is 
changed by ΔT, with corresponding momentum change 
Δp = p – po, then the change in equilibrium orbit Δxeo at 
the ith BPM is related to dispersion by 
       ( ) ( ) ( ),eo i ix s T D s TδΔ = ,                        (8) 
where, as for the chromaticity, δ(T) = Δp/po.  At a given 
BPM, the ratio D(s) = Δxeo/ δ(T) should be constant over 
the range of values of momenta used in the scan.  

Chromaticity and dispersion are measured at a range of 
kinetic energies obtained by adjusting the high voltage 
power supply on the UMER gun.  Four turn position data 
is recorded for the first four turns in the ring and the 
corresponding momenta, tunes, and equilibrium orbits 
computed as described above.  

  The experimental results for ηx,y at various beam 
currents are shown in table 1. The values are obtained 
from least squares fits of the data Δν (T) = ν (T) – νo as a 
function of  δ(T).  The results for ηx derived   from both 
four turn and FFT measurements  are  in  good 
agreement  with  the ELEGANT  simulation. The ηy 
values  are not,  but  it has  been  clear for  some time 
that  both  measuring  and  simulating  vertical  motion  in 
UMER  is  difficult.  Improving  these  is  a major work in 
progress.   
 Table 1: Natural chromaticity data. * means that a         
value could not be determined with sufficient accuracy.    

Beam               Measured           Measured          Predicted

Current            (4 turn data)          (FFT data)         (Elegant)
I bm (mA) ηx     ηy ηx     ηy ηx     ηy

0.592 -7.6 ± 3.2 * -7.1 ± 0.6 * -7.9 -10.9
5.85 -7.4 ± 1.0 -8.3 ± 0.9 -7.1 ± 0.7 * -7.9 -10.9
20.2 -7.9 ± 1.0 -8.4 ± 2.1 * * -7.9 -10.9 

The results of measurement and simulation of dispersion 
are shown in figure 1.  These show that globally there is a 
reasonable model of the ring, but not in detail.  They also 
show the difficulty of modelling the vertical and 
horizontal effects of the earth’s field and the need for a 
new, more accurate determination of ring optical element 
locations. 
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Figure 1: Measured horizontal dispersion for the 20 mA 
beam (blue) compared to the ELEGANT simulation (red). 

MOMENTUM COMPACTION 
 
The momentum compaction factor [4] 

                              c
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δ

Δ
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describes the fractional change in orbit circumference 
C(T) due to a fractional change in particle momentum 
δ(T).  In UMER where the relativistic β = v/c is only 0.2  
(v = 6 cm/ns) the change in C is velocity dominated.  The 
nominal energy spread at the center of a 100 ns (6 meter) 
long bunch is 20eV.  So we do not see much beam 
enlargement due to energy spread.  Noting that ΔC=C-C0 
so that 

      
0
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C
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and C = v(T)trev and trev=1/frev, 0ne the following two 
expression can be used to measure momentum  
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 compaction, 
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where v, t and f are velocity, time and revolution 
frequency at the operating momenta of p and po, 
respectively. 

 
Three approaches have been tried to measure αc: 1. 
measuring the time of revolution, 2. measuring the 
frequency of revolution and 3. determining the average 
change in circumference from the average change of the 
xeo values at all BPM’s, each over a range of δ(T) 
corresponding to 9.7 keV ≤ T ≤ 10.3 keV. 

 Measuring the time of revolution directly by measuring 
time of arrival of successive bunches of the UMER 
installed wall current monitor has proved to be 
insufficiently accurate because of an erosion of the beam 
head and tail due to space charge and lack of an 
electromagnetic barrier bucket, now under development 
[6].  Measuring the revolution frequency via the same 
FFT technique used to measure tune and computing the 
frequency (of revolution) peak off-line with a Lorentz 
distribution has been more successful but is still marginal 
because the accuracy has been limited to about 1 kHz out 
of the 5.087 MHz  nominal revolution frequency, and 
better than 0.1 kHz resolution is needed.  

The third technique evolved from the chromaticity 
measurements where the equilibrium orbit xeo is recorded 
at each BPM for each momentum set δ(T).  We use a 
concept called the reference circle:  UMER is designed as 
a 36 sided polygon with each side equal to 32 cm in 
length.  But for the effect of the earth’s field, the beam 
trajectory circumference would be 1152 cm.  The distance 
from the center of UMER to each vertex (where the 
bending dipoles are located) is 183.57 cm. The 
circumference of a reference circle tangent to the ring at 
each vertex has this radius and a circumference of 1153.5 
cm.  Because of the earth’s field, this turns out to be very 
close to the measured value for a 10keV beam.  Dividing 
ΔC and C by 2π, gives reference radii ΔR=R-Ro and Ro.  
We have found that for each momentum scan, there is an 
average equilibrium orbit value <xeo> obtained from 
averaging the 14 xeo values at the BPM’s computed using 
equation (7).  We can then obtain a set of <xeo> values 
for each momentum used in the scan.  From this data we 
compute a table of Δxeo corresponding to the set of δ(T).  
Rewriting equation (7) with Δxeo = ΔR and  Co=Ro, we  

 
Table 2: Momentum compaction data for three beam 
currents. The ELEGANT prediction is not current 
dependent, and so is the same for all currents. 

I bm (mA)  αc (meas.) ELEGANT

0.6 0.0287 ± .0124 0.0204
6 0.0223 ± .0029 0.0204

20.0 0.0234 ± .0008 0.0204  
 

 
have, 
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Ro = 183.57 cm is arbitrarily taken as the radius of the 10 
keV reference circle since this corresponds closely to our 
best measured value and is consistent with the ring 
design.  A least squares fit to the ratios Δxeo/Ro to the 
corresponding δ(T) gives the values shown in Table 2. 
The results are consistent with the Elegant simulation, and 
as expected, do not show any dependence on Ibm at this 
level of measurement accuracy. 

CONCLUSIONS 
The modelling and measurement of coherent beam 

effects in highly space charge dominated beams using a 
single particle approach, has been shown to be effective.  
As expected, there appears to be no dependence of ηx,y or 
αc on Ibm.  The dispersion measurements at Ibm = 20 mA 
appear to be consistent with the model developed in 
ELEGANT in general, but not in detail!  Data has been 
taken for Ibm = 0.6 and 6.0 mA and will be processed 
soon.  The next step is to apply these techniques to the 80 
and 100 mA beams, a serious challenge. 
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