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Abstract

We have applied the Werner-Cary method [J. Comp.
Phys. 227, 5200-5214 (2008)] for extracting modes and
mode frequencies from time-domain simulations of crab
cavities, as are needed for the ILC and the beam deliv-
ery system of the LHC. This method for frequency ex-
traction relies on a small number of simulations, and post-
processing using the SVD algorithm with Tikhonov reg-
ularization. The time-domain simulations were carried
out using the VORPAL computational framework, which
is based on the eminently scalable finite-difference time-
domain algorithm.

A validation study was performed on an aluminum
model of the 3.9 GHz RF separators built originally at
Fermi National Accelerator Laboratory in the US. Com-
parisons with measurements of the A15 cavity show that
this method can provide accuracy to within 0.01% of ex-
perimental results after accounting for manufacturing im-
perfections. To capture the near degeneracies two simula-
tions, requiring in total a few hours on 600 processors were
employed. This method has applications across many areas
including obtaining MHD spectra from time-domain simu-
lations.

INTRODUCTION

Accelerator cavities are essential to such high-energy
physics experiments as the Large Hadron Collider and
the International Linear Collider, in addition to numerous
other smaller experiments in the high-energy and medical
physics fields. They are tunable devices with performance
dependent on features like shape, curvature, and size.

However, it is a non-trivial task to determine the depen-
dency of such features on cavity performance. In addition,
usage of such expensive metals like niobium means design
errors can be particularly costly. Coupled with the knowl-
edge that machining can never deliver exact specifications,
it is crucial to perform computational studies to understand
final cavity design so as to avoid costly design errors.

Finite element simulations are presently used to com-
pute modes of accelerator cavities within the US Depart-
ment of Energy’s science program [1]. Recently, a novel
approach that uses the Finite-Difference Time-Domain
(FDTD) method applied to Maxwell’s equations for com-
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putation of frequencies and modes of accelerator cavities
was reported [2]. The common approach to using the
FDTD method applied to Maxwell’s equations for fre-
quency extraction is to use narrowly-filtered states com-
bined with post-simulation FFTs. The limitations of this
approach are it cannot account for degenerate frequencies
and it cannot reconstruct spatial mode patterns. The new
method presented by Werner and Cary in [2] overcomes
these limitations.

We present work on using the Werner-Cary frequency
extraction method for an aluminum model of the 3.9 GHz
separators fabricated at Fermilab in 1999 for the develop-
ment of a separated K+ beam. Previously, experimental
frequency measurements obtained from bead pull experi-
ments were reported in [3], in addition to computational
frequency measurements obtained using a finite integration
method. We show here that calculations using the VOR-
PAL computational framework along with the Werner-Cary
frequency extraction method permitted discovery of ma-
chining errors that previously were not reported.

BROADLY-FILTERED FDM

Frequency Filtering

The first step in using FDTD simulations for frequency
extraction is to create filtered states that can be used
within the Filter Diagonalization Method (FDM). To de-
scribe the method of constructing filtered states, we present
Maxwell’s equations as

∂B(x,y,z,t)
∂t = −∇× E(x, y, z, t)

∂E(x,y,z,t)
∂t = −∇× B(x, y, z, t) − J(x, y, z, t)

(1)
which for FDTD simulations are discretized on a regular
Yee mesh [4] with electric fields placed on edges and mag-
netic fields located on faces as depicted in Fig. 1. The ac-
celerator cavity is embedded within this Yee mesh and the
Dey-Mittra embedded boundary algorithm [5] is used to
model the curved boundaries to second-order accuracy.

The construction of filtered states is possible with an
appropriately-defined current vector, J. Putting

g(t; ω1, ω2, T ) = 2
[
sin(ω1(t − T/2))

t − T/2
− sin(ω2(t − T/2))

t − T/2

]

(2)
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Figure 1: Electric fields on a Yee cell are placed on edges
and magnetic fields are placed on faces ensuring accurate
divergence calculations.

and

f(t) =
{

g(t; ω1, ω2, T ) exp−σ2
ω(t−T/2)2/2 0 ≤ t ≤ T,

0. otherwise,
(3)

we introduce J(x, y, z, t) = f(t)Ĵ(x, y, z) as a current that
excites modes within the frequency range [ω1, ω2]. The
field Ĵ(x, y, z) is a spatial pattern that permits extraction
of the modes of interest. See [2] for further details.

Filter Diagonalization

For the FDM, we use the fact that we have a field of inter-
est, s, which is either the electric field, E, or the magnetic
field, B, and we have the second-order Maxwell’s equation
given by

− ∂2

∂t2
E(x, y, z, t) = ∇×∇×E(x, y, z, t) = HE(x, y, z, t).

(4)
We solve the spatial eigenvalue problem for ∇× ∇× as a
time evolution eigenvalue problem for H = − ∂2

∂t2 .
In brief, we transform the matrix H by partially diago-

nalizing it into a block diagonal form. One large block (the
filtered part) is ignored and what remains isa small block
that is diagonalized by standard linear algebra routines for
small matrices. Using SVD techniques, this diagonaliza-
tion can be completed in a few seconds. Most of the work
is getting H into block diagonal form. The method can be
summarized as follows:

1. Find L filtered state vectors s� that span the subspace
of desired eigenmodes of H . L must be at least as
large as the number of modes in the subspace.

2. Apply H to each filtered state vector to get r� = Hs�.

3. Construct the P × L matrix Sp� = s�,p from P
different components of each filtered state s�, where
P ≥ L. Similarly construct Rp� = r�,p.

4. Solve the generalized eigenvalue equation S †Ra =
λS†Sa for eigenvalues λ and eigenvectors a. This

can be numerically challenging, so we suggest find-
ing the eigenvalues of S †S and then solving (S†S +
α2

cutoff)−1S†Ra = λa, where α2 is less than the sig-
nificant eigenvalues and greater than the insignificant
eigenvalues of S†S.

5. Eigenvalues of H are the λm. Eigenvectors of H are
vm =

∑L
�=1 am,�s�.

6. If P > L, estimate the relative error εm of each mode
(see [2]). Modes with errors near one are doubtful; if
H has only real eigenvalues, then modes with eigen-
values that have imaginary parts larger than the error
are also doubtful. Increasing αcutoff may vanquish
doubtful modes.

COMPUTATIONAL RESULTS

Initial Calculations

The FDM method applied within the VORPAL compu-
tational framework was used to extract frequencies of the
A15 cavity, which is illustrated in Fig. 2. Using bead pull
experiments the frequency of the π-mode was experimen-
tally determined to be 3902.810 MHz once atmospheric
factors such as humidity and temperature were taken into
account [3].

Figure 2: A15 cavity: Stack of four unpolarized dumbbells
fabricated in 1999 at Fermilab for the development of a
separated K+ beam.

In [3], it was also noted that computer simulations used
for frequency extraction yielded an error of approximately
5 MHz for the π-mode. Initial VORPAL calculations re-
ported that the π-mode frequency was 3900.33MHz, yield-
ing an error of approximately 2 MHz. Convergence of the
π-mode using the FDM method with VORPAL has been
illustrated in Fig. 4 which also shows the Richardson ex-
trapolation value and the experimentally-measured value.

Besides extracting frequency values, we can also recon-
struct the spatial mode pattern using the FDM method with
VORPAL. VORPAL uses a visualization schema (called
vizschema [6]) that permits viewing of the modes with
VisIt [7]. In Fig. 3 we have displayed the z-component
of the magnetic field for the π-mode showing the correct
behavior.

FR5PFP079 Proceedings of PAC09, Vancouver, BC, Canada

4494

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques



Figure 3: A slice of the z-component of the magnetic field
for the A15 cavity’s π-mode.

Figure 4: Convergence for the π-mode frequency for the
A15 cavity. The open circle displayed on the ordinate is
the value found by Richardson’s extrapolation while the ×
on the ordinate is the experimentally determined frequency.

Resolving Discrepancies

Accounting for the 2 MHz difference between experi-
mental measurements and calculations required a consid-
erable amount of effort. A variety of sources were inves-
tigated including missing physical effects, inaccuracies in
calculations, and errors in linear algebra routines. After
much searching, we narrowed the discrepancy down to ma-
chining error.

In [8], the authors had noted that for a similar cavity the
sensitivity of frequency with respect to equatorial radius
was found to be -80.6 MHz/mm while the sensitivities of
iris radius and cell half length were only -25.8 MHz/mm
and 17.4 MHz/mm, respectively. Knowing that machining
accuracies are 1 mil or 0.0254 mm, it seemed possible that
the 2 MHz shift in the frequency of the π-mode could be
the result of a 1 mil error in the equatorial radius.

Thus, we performed another set of calculations after re-
ducing the equatorial radius by 1 mil and found the fre-
quency of the π-mode to be 3902.5 MHz, only off by 310
kHz. See convergence plots in Fig. 5. More rigorous stud-
ies have also been performed, which will be reported in
later work, that show our calculations are within measure-
ment uncertainties.

FINAL REMARKS

Using the VORPAL computational framework with the
Werner-Cary Filter Diagonalization method, we predicted
errors in machining for a stack of four unpolarized dumb-

Figure 5: Convergence for the π-mode frequency for the
A15 cavity with an equatorial radius smaller by 1 mil. The
open circle displayed on the ordinate is the value found by
Richardson’s extrapolation while the × on the ordinate is
the experimentally determined frequency.

bells fabricated in 1999 at Fermilab. Previously, computa-
tional errors of up to 5 MHz were reported. New results
have shown that we can accurately determine frequencies
to several parts in 105 and thus predict that errors in ma-
chining exist. These simulations were performed on large
supercomputers using up to 600 processors and delivering
remarkable scalability.
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