
A SOFTWARE ARCHITECTURE FOR HIGH LEVEL APPLICATIONS *

Guobao Shen, BNL, Upton, NY 11973, U.S.A.

Abstract
A modular software platform for high level applications

is under development at the National Synchrotron Light
Source II project. This platform is based on client-server
architecture, and the components of high level
applications on this platform will be modular and
distributed, and therefore reusable. An online model
server is indispensable for model based control. Different
accelerator facilities have different requirements for the
online simulation. To supply various accelerator
simulators, a set of narrow and general application
programming interfaces is developed based on Tracy-3
and Elegant. This paper describes the system architecture
for the modular high level applications, the design of
narrow and general application programming interface for
an online model server, and the prototype of online model
server.

INTRODUCTION
A software platform so-called a HLA (High Level

Application) environment is indispensable in order to
efficiently commission, operate and maintain a modern
large-scale accelerator complex such as the NSLS-II [1]
(National Synchrotron Light Source II) complex. A good
HLA environment usually provides rich software tools to
efficiently operate the beams, tune accelerator parameters,
record system parameters, save online components
setting, restore machine to previous status, archive live
data, analyze measured and/or archived data, compare
machine status with design, and so on. Different
accelerator facilities developed different HLA
environments such as MMLT[2] (Matlab Middle Layer
Toolkit), which was developed jointly by ALS/LBNL and
SPEAR3/SSRL, XAL [3] by SNS/ORNL, and SDDS[4]
(Self Describing Data Sets) by APS/ANL. Each
environment provides systematic and unified control of
accelerator components, and has seamless integration with
low level device control. Those environments have been
used at many different accelerator facilities for many
years, and have been demonstrated to be effective, and
stable.

Those different environments provide similar functions,
but all software applications provided by those
environments tie together functions through data or file
structures. It is very difficult to share applications
between each other. Someone has to develop his own
application or algorithm from scratch if it is not supported
by his HLA environment.

A new environment for the HLA is under design based
on the client-server architecture and preliminary research
has been doing at NSLS-II project. With this architecture,
the components of high level applications will be modular

and distributed, and therefore reusable. To take advantage
of existing HLA environment, the design is started based
on the MMLT because it is based on a Middle Layer
environment and the concept is closer to our goal than
other environments.

Another problem for existing HLA environment is that
each environment has a built-in simulation engine, but
only supports its own engine. A standalone online model
server is indispensable to construct a modular and
distributed HLA environment. As a general online server,
it is needed to support different simulators because
different facilities have different requirements and
therefore require different simulators. A set of narrow and
general APIs (Application Programming Interfaces) is
developed for the online server to support various
simulators. The API is designed and prototyped based on
Tracy-3 [5] and Elegant [6] simulation code.

This paper describes the design of the modular
architecture for HLA environment, the narrow API
development for online model server, and the prototypes
for the online server.

SYSTEM ARCHITECTURE
An accelerator control system consists of 2 parts: low

level device control and high level application as
illustrated in Figure 1. A software toolkit known as EPICS
[7] (Experimental Physics and Industrial Control System)
has been used widely around the world for the low level
device control. NSLS-II project has adopted EPICS as its
standard platform for the control system construction [10]
to control all hardware subsystems such as magnet power
supply, and beam instrumentation. The communication
between low level device control and HLA is based on the
EPICS channel access protocol [8].

Figure 1: Architecture for a modular HLA environment.

As shown in Figure 1, different applications with
different functionalities are distributed in different servers.
The Middle Layer client-server, which is heart of the
modular environment, is an application family. The
application family consists of many different applications,
such as data server, model server, relational database
server, and other thin/thick applications. The data server
takes charge of measuring and caching beam live orbit,

*Work performed under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC.

Proceedings of PAC09, Vancouver, BC, Canada FR5REP004

Controls and Operations

T04 - Control Systems 4779

calculating orbit differences and beam optics deviations,
measuring beam response matrix, and so on. It will be a
collective server and locate on several computers
physically. The model server runs site specified simulator,
loads lattice configuration from relational database, and
calculating theoretical beam optics and other desired
beam parameters. The thin/thick application server could
be an archiving server to archive interested data at desired
repetition rate, a GUI (graphic user interface) to present
machine real time status, or others. A relational database
server such as IRMIS [11] can be used to store the
information of lattice design, hardware component
installation, machine status snapshot, and so on. Each
application or server can be plugged into the Middle
Layer client-server.

With this platform, the components of each application
can be modularized. The development for algorithm, GUI
presentation, and other application can be separated by
well design and developer can dedicate on their own
development. It is very flexible for user because any user
can plug in his own application developed with his
favorite programming, or his own simulator without
changing other application. It will be easy to reuse exist
application module.

API DESIGN FOR ONLINE MODEL
Model based control is one most important component

for a HLA environment. The heart for the model based
control is its online simulator, which will run as an online
model server. As describes above, a narrow and general
API interface is required to support various simulators.
Our design was started based on the MMLT toolkit
because its structure especially the concept of Middle
Layer, which is shown in Figure 2, is closer to our
architecture than other environments. Another reason is
that the MMLT toolkit is using by many light source
facilities, and there are various applications available.
Since the NSLS-II is a light source, we can port the
MMLT applications to our platform easily.

Figure 2: Software structure of MMLT.

We enhanced the MMLT to support Tracy-3 and
Elegant simulators, and clarified the border between
application and model. Meanwhile, we prototyped the
narrow API interface.

Narrow Interface esign
As describe above, the MMLT environment provides its

own simulator which is known as the AT [9] (Accelerator
Toolbox). The AT code is implemented in pure matlab
language, and integrated in the MMLT seamlessly.

The data structure is the heart part of MMLT, and all

applications tie together through data including the AT
model. The border between applications and between
application and AT model is not very clear.

By analyzing the MMLT data flow, we found that the
data required by applications from the AT model is the
beam optic parameters. We defined a set of API to get
data and set configuration.

Because Tracy-3 and Elegant code are written in
C/C++, the API interface is developed in C/C++ naturally.
The API code is compiled with Tracy-3 or Elegant into a
shared library, which can be called by a matlab command.
The system structure is illustrated as Figure 3.

Figure 3: Enhanced MMLT and narrow API design.

All communication between MMLT and Tracy-3 or
Elegant is through the narrow API interface, and border is
clear between each other. The API consists of 3 parts: (a)
simulator configuration and initialization; (b) beam optics
and other beam parameters; and (c) miscellaneous. The
part (a) for both Tracy-3 and Elegant is similar, and has
slight difference. The part (b) is exact same for both
simulators. The part (c) is a place holder for future
extension.

Applications for NSLS-II
The MMLT configuration for Tracy-3 supporting has

been full developed and some MMLT applications have
been tested against Tracy-3. We did not complete the
configuration for Elegant because of 2 reasons. (a) One is
the configuration development is not our major target, and
we are much more interested in the narrow interface. (b)
Another one is that the architecture for all simulators is
same, especially the interface for beam optics is exact
same. We assume that, the configuration can be used for
Elegant with tiny modification.

Some MMLT applications are tested against Tracy-3
without any modification such as plotfamily for plotting,
quadrupole center, chromaticity measurement, response
matrix measurement, and so on. Figure 4 shows a beta-
plotting for 2 planes plotted by plotfamily.

Figure 4: Plotfamily runs against Tracy-3. The upper part
plots the beta in horizontal plane, and the lower part plots
the beta in vertical plane.

D

FR5REP004 Proceedings of PAC09, Vancouver, BC, Canada

4780

Controls and Operations

T04 - Control Systems

Figure 5 shows another MMLT application to measure
the chromaticity. Figure 5-a is the result running against
Tracy-3 simulator, and Figure 5-b is the result running
against AT. The application code works for both
simulators without any modification. The results from
different simulators are same.

Figure 5: Chromaticity measurement against different
simulators: (a) is the result against Tracy-3, and (b) is the
result against AT.

ONLINE SERVER PROTOTYPE
With above interface, a prototype for online model

server is developed. A so-called “virtual accelerator” (VA)
is introduced for the development. The VA is originally
for high-level application developing, testing and de-
bugging at an early stage. The VA developed by SOLEIL
and DLS (Diamond Light Source) consists of Tracy-2
tracking code, and wrapped the simulator into EPICS
system. We updated it to Tracy-3 and communicated with
the EPICS system through our API interface as illustrated
in Figure 6.

Figure 6: Structure of current online model server.

As shown in Figure 6, we also wrapped the Elegant
code into EPICS device support using the same API
interface. We found that there is memory leak problem
inside the Elegant code and it caused the server unstable.
The Elegant library can be called through the EPICS

about a few thousands time. But the API interface works
for both simulators.

SUMMARY
A modular architecture is proposed at NSLS-II project

to make the high level application modular, distributed,
and therefore reusable. A narrow and general API
interface for online model server is designed and
prototyped by enhancing current MMLT environment to
support various simulators such as Tracy-3 and Elegant.
Some MMLT applications have been tested against Tracy-
3 after that without any modification. With the API
interface, a standalone online model server has been
prototyped based on a “virtual accelerator”. Both Tracy-3
and Elegant have been integrated into the online model
server. The narrow API interface works well in both
MMLT environment and online model server.

ACKNOWLEDGEMENT
The author would like to thank Johan Bengtsson,

Weiming Guo, Donald Dohan, and Boaz Nash of BNL
and Michael Borland of ANL for their helpful discussions
and comments. He also wants to thank Leo Bob Dalesio
for his continuous encouragement and support.

REFERENCES
[1] http://www.bnl.gov/nsls2.
[2] G. Portmann, J. Corbett, A. Terebilo, “Middle Layer

Software Manual for Accelerator Physics,” LSAP-
302, 2005; J. Corbett, A. Terebilo, G. Portmann,
“Accelerator Control Middle Layer,” PAC 2003.

[3] J. Galambos, et al, “XAL Application Programming
Framework”, Proceedings of ICALEPCS 2003,
Gyeongju, Korea.

[4] http://www.aps.anl.gov/Accelerator_Systems_Division/
 Operations_Analysis/manuals/SDDStoolkit/SDDStoo

lkit.html
[5] J. Bengtsson, “TRACY-2 User’s Manual”, SLS

Internal Document, February 1997; M. Böge,
“Update on TRACY-2 Documentation”, SLS Internal
Note, SLS-TME-TA-1999-0002, June 1999

[6] M. Borland, “Elegant: A flexible SDDS-compliant
code for accelerator simulation,” Advanced Photon
Source Light Source Note LS-287 (2000).

[7] http://www.aps.anl.gov/epics/.
[8] http://www.aps.anl.gov/epics/base/R3-14/10-

docs/CAref.html.
[9] A. Terebilo, “Accelerator Toolbox for MATLAB”,

SLAC-PUB-8732 (2001).
[10] L. Dalesio, “NSLS-II Control System”, Proceedings

of ICALEPCS 2007, TPPB41, Knoxville, Tennessee,
2007, USA;

[11] D. A.Dohan, L. R. Dalesio, G. Carcassi, “High
Availability On-Line Relational Databases for
Accelerator Control and Operation”, this conference

Proceedings of PAC09, Vancouver, BC, Canada FR5REP004

Controls and Operations

T04 - Control Systems 4781

