
ALS CONTROL SYSTEM UPGRADE IN C#*

H. Nishimura, M. J. Beaudrow, W. Byrne, C. Ikami, G. J. Portmann, C. Timossi and M. E. Urashka
LBNL, Berkeley, CA 94720, U.S.A.

Abstract
We are just completing the demonstration phase of the

high-level control system upgrade of the Advanced Light
Source (ALS) injector. The goal of this upgrade was to
modernize the control room operator interface software
and hardware. To upgrade the software, we are
consolidating and replacing exiting programs with new
applications programmed with C#, Matlab and some
EPICS EDM. To upgrade the hardware we replaced
console computers with higher performance PCs running
Windows Vista. The accelerator area of upgrade is from
the electron gun, through the LINAC, to the booster
injection point. The upgraded system is now in the testing
phase. At the same time, we have started the new phase of
upgrading the remaining sections by using the newer
technologies.

THE CURRENT STATUS
The ALS Injector Control System

The ALS[1] control system[2] has been gradually
migrating to EPICS[3] for over a decade since its
commissioning in 1993. All the accelerator upgrades
adopted EPICS whenever possible. On the other hand, the
injection control system is still using the original control
system. Due to the increasing age of this system and the
launch of the top-off injection project[4], an upgrade for
the injector has became more urgent. A small team,
known as HLC (High Level Controls), with limited
resources and a tight time schedule, was formed to
address this problem.

The team addressed two primary issues. First, the
underlying Application Programming Interface (API) of
the existing software, which was developed for the
original system, needed to be modified to use channel
access. Second, over the long history of the ALS, so many
different applications had been developed that performed
similar functions, that it became confusing for operations
to operate both the injector and the machine in general;
these applications had to be re-written and consolidated.

Choice of the .NET Framework
The HLC chose the .NET Framework[5] and the C#

programming language[6] for re-writing the software
since we already had significant experience in Windows
development including using Windows with EPICS
Channel Access and .NET (SCA.NET[7]). Similarly, we
chose to use the latest version of Windows (Vista) since
we were already using Windows (2000) on the existing
consoles.

Software Design
The main design goals were to make the software

component-based and data-driven. Screens with live data
are assembled from Windows Forms custom controls,
which in turn are built with the SCA.NET component.
The data for configuring these components, such as the
process variable names, is read from XML files at run
time. These XML files are created from data from a
relational database using ADO.NET 2.0[8] and LINQ to
XML[9].

Although the .NET runtime on the Windows Vista is
version 3.5, for this demonstration we chose to stay at the
2.0 level but to utilize some 3.0/3.5 features such as LINQ
to XML and the Windows Communication Foundation
(WCF)[10] keeping us compatible with the Unix/Linux
implementation of .NET called MONO[11].

Progress
The goal of the initial phase was to operate the first half

of the injector section entirely from the newly developed
software running on the new consoles[12]. In addition to
.NET, several important applications were developed with
Matlab[13] and EPICS EDM[14].

After a year’s effort, we are in position to commission
the new system: the software and some hardware is in
place and some operator tuning of the injector has been
tested. The final step in this phase will be to employ the
new system in day-to-day operation. The biggest
difficulty to this commissioning effort has been the
successful operation of top-off restricting our access to
the injector for testing to a few hours of physics shifts
which occur at most one every week. More detail will be
reported in our companion paper[15].

THE NEW PHASE OF HLC

The Plan
While completing the initial phase, we have started the

next phase of development: to replace the controls for the
rest of the accelerator, the storage ring and booster.
During the new phase, we will make a change to our
development strategy by switching from WinForm to the
Windows Presentation Foundation (WPF)[16].

WPF allows a separation of application logic and the
description of its graphical properties. A .NET language,
like C#, is used to create the application logic but the
graphical configuration and simple behavior are described
in an XML-based language called XAML (the Extensible
Application Markup Language)[17] which describes the
configuration of user-interface (UI) components and the
interactions between their properties.

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC02-05CH11231

Proceedings of PAC09, Vancouver, BC, Canada FR5REP015

Controls and Operations

T04 - Control Systems 4803

EPICS Display Manager in WPF
By creating custom controls for EPICS Channel Access,

which we call EPICS WPF Components, other UI
components can interact with EPICS data by defining the
relations in XAML. This means that EPICS client
programs can be created in XAML by using an XAML
editor such as Expression Blend 2[18]. The process of
creating WPF applications in XAML is similar to that of
authoring web pages in an interactive visual designer. We
have also been using EPICS WPF Components to create
an application that we call EPICS Display Manager in
WPF which can be use to create EPICS clients with
simple graphics.

An example will illustrate our use of EPICS in XAML.
We use dm as the XML name space to reference our
components. DmAnalogChannelEdit is one of the EPICS
components that exports a public property Channel that
holds the EPICS Channel name.

<dm:DmAnalogChannelEdit

 Channel="SR13C___HCM1___AC00"/>

When a program runs, this component reads and displays
the channel value at 1 Hz. We can type in a new value and
set it to the device. These functions are embedded in C#.

To add a Scroll Bar, a standard WPF UI component, and
link it to the EPICS component. First, give the EPICS
component a name HCM1 so that the scrollbar can refer
it.

 <dm:DmAnalogChannelEdit
 x:Name="HCM1" Title="SR13 HCM1"
 Channel="SR13C___HCM1___AC00"/>

Then, we create a scrollbar and bind its value to that of
the EPICS component.

 <ScrollBar Orientation="Horizontal"
 Maximum="10" Minimum="-10"
 Value="{Binding ElementName=HCM1,
 Path=Value, Mode=TwoWay}" />

These two components are now synchronized by the
property Mode=TwoWay so that the scrollbar’s knob
follows the channel value, and vice versa. This is a feature
of WPF called Data Binding[19].

As the above example shows, we can use EPICS WPF
Components with other components, and make use of
various features of WPF. We do not need to create any
special parser or scripting. In addition, we can add C#
routines whenever needed which makes this Display
Manager highly versatile.

Conclusion
After a year of working with C# and .NET on Windows

Vista, we have demonstrated that these tools can be used
successfully for modernizing the high level software
controls for the ALS injector. It remains to be seen how a
graphics editor for WPF like Blend can be used by

operations staff and others to produce useful accelerator
applications with minimal C# coding.

AKNOWLEDGEMENTS
The authors thank A. Biocca, P. Denes and D. Robin for

their support. We appreciate patient cooperation of
machine operators for using new programs and giving us
constructive comments.

REFERENCES
[1] ALS CDR, LBL PUB-5172 Rev. LBL,1986
 A. Jackson, IEEE 93PAC, 93CH3279-7,1432, 1993.
[2] S. Magyary, IEEE PAC93, 93CH3279-7,1811,1993.
 S. Magyary et al, NIM A 293, 36-43, 1990
[3] L.R. Dalesio, et al., ICALEPCS ’93, Berlin, 1993.
 http://www.aps.anl.gov/epics/
[4] C. Steier, et al., PAC 2007, Albuquerque, 1197, 2007
[5] http://www.microsoft.com/net/
[6] http://msdn.microsoft.com/en-us/vcsharp/aa336809

.aspx
[7] H. Nishimura and C. Timossi, PCaPAC 2005
 H. Nishimura and C. Timossi, PCaPAC 2006, 37
 C. Timossi and H. Nishimura, PCaPAC 2006, 56
 C. Timossi and H. Nishimura, PCaPAC 2008, 24
[8] http://msdn.microsoft.com/en-us/library/aa286484

.aspx
[9] http://msdn.microsoft.com/en-us/library/bb387098
 .aspx
[10] http://msdn.microsoft.com/en-us/library/ms735119

.aspx
[11] http://www.mono-project.com
[12] H. Nishimura et al., PCaPAC 2008, Ljubljana, 122
[13] G. Portmann, PCaPAC 2005, Hayama, LBNL Pub-

925
[14] J. Sinclair, http://ics-web.sns.ornl.gov /kasemir/

train_2006/ 1_4_EdmTraining.pdf
[15] G. Portmann et al., this proceedings.
[16] http://msdn.microsoft.com/en-us/netframework/

aa663321.aspx
[17] http://msdn.microsoft.com/en-us/library/ ms752059

.aspx#xaml_files
[18] http://www.microsoft.com/Expression/
[19] http://msdn.microsoft.com/en-us/library/ms750612
 .aspx

FR5REP015 Proceedings of PAC09, Vancouver, BC, Canada

4804

Controls and Operations

T04 - Control Systems

