
INTERFACING OF THIRD-PARTY ACCELERATOR CODE WITH THE
LUCRETIA FLIGHT SIMULATOR∗

Stephen Molloy†‡ , Royal Holloway, University of London,
Mauro Torino Francesco Pivi, Glen White, SLAC National Accelerator Laboratory,

Yves Renier, LAL, Orsay

Abstract

The Flight Simulator is a tool used for international col-
laboration in the writing and deployment of online beam
dynamics algorithms. Written as an add-on to the Lucretia
tracking software, it allows simulation of a beamline in a
control system environment identical to that in the control
room. This allows the testing and development of monitor-
ing and correction tools by an international collaboration
by making the control system transparent to the user. The
native beamline representation are those adopted by Lucre-
tia, so, in order to allow third party software, to interface
with this system, it was necessary to develop functionality
to convert the lattice to a universal representation. Accel-
erator Markup Language (AML), and its associated Uni-
versal Accelerator Parser (UAP), were used for this pur-
pose. This paper describes the use of the UAP to convert
the internal beamline representation to AML, and the test-
ing of this conversion routine using the lattice description
of the ATF2 final focus experiment at KEK, Japan. Also
described are the inclusion of PLACET and Strategic Ac-
celerator Design (SAD)[9] based algorithms using appro-
priate converters, and tests of these on the ATF2 extraction
line.

INTRODUCTION

The Flight Simulator (FS)[1] is a middleware soft-
ware package, designed to facilitate the development and
deployment of various tuning algorithms currently un-
der development (e.g [2][3][4]) for the ATF2 accelerator
facility[5]. It has been written as part of the Lucretia[6]
beamline tracking package, and it allows, through the use
of an EPICS Channel Access connection to the machine,
or Lucretia’s tracking simulation engine, code to be devel-
oped in an identical environment to that found in the control
room. Thus, software may be thoroughly debugged in sim-
ulation mode prior to deployment on the actual machine,
thus increasing the efficiency of beamline operations.

One of the principle goals of the FS was to allow users
to develop their algorithms in whatever software package
they felt was appropriate (e.g. SAD is in widespread use at
KEK), so a method had to be found to circumvent the fact
that Lucretia’s data structures are kept in its native, Mat-

∗Work supported by ...
† smolloy@pp.rhul.ac.uk
‡ Formally with SLAC National Accelerator Laboratory

lab, format. For this reason, it was decided to implement
a utility to allow conversion of this format to Accelerator
Markup Language (AML).

ACCELERATOR MARKUP LANGUAGE

Accelerator Markup Language (AML)[7][8], is based on
eXtensible Markup Language (XML), and is a well devel-
oped format for describing accelerator lattices. It has been
designed to be as flexible as possible, e.g. making few as-
sumptions about the species of particle to be accelerated,
and, due to its basis in XML, is capable of being extended
to allow new elements, etc., to be represented.

AML was thought to be an excellent choice for the de-
fault representation language for the FS for several reasons.

Firstly, AML has been designed to be as complete a rep-
resentation of a beamline as possible; including the abil-
ity to store engineering details (e.g. drawing numbers for
beamline components) that may not be useful in other lan-
guages. In addition, it is structured in such a way that
means that having to, for example, split a magnet in or-
der to include a centrally located BPM, is unnecessary. In
such a case, AML would have a single representation of the
magnet, and include a BPM attribute on its XML tree.

In addition, many groups, including the ILC, are mi-
grating their lattices to AML format, which means that
AML may be considered to be an international standard
for beamline representation, and is an acceptable format
for use by a wide variety of users.

UNIVERSAL ACCELERATOR PARSER

Figure 1: Schematic of the operation of the Universal Ac-
celerator Parser.

In conjunction with AML, an additional C++ library
known as the Universal Accelerator Parser (UAP) has been
developed[7][8] in order to easily integrate AML with soft-
ware.

FR5REP023 Proceedings of PAC09, Vancouver, BC, Canada

4814

Controls and Operations

T04 - Control Systems



UAP provides a toolkit to allow AML files to be read
into the working memory of a C/C++ program in such a
way that allows easy dissemination into other lattice de-
scription formats, and also simplifies much of the effort of
translating from that format into AML.

The operation of the UAP is shown in schematic form
in figure 1. The ‘Lattice Input File’ on the left of the di-
agram is the AML representation of the machine lattice,
and the ‘Parser’ is the UAP, which takes the AML descrip-
tion, and converts it into a C++ object, ‘Parser Structure’.
Once this operation has completed, the remaining task is to
convert this structure into the format required by the user
— a task which is considerably facilitated with the use of
several C++ methods included in the UAP.

The converse operation — that of converting some alter-
native lattice format into AML — is also greatly simplified
by the UAP. In this case, the user would build software us-
ing the methods availble in the native format of the lattice
representation code and from the UAP, to convert the orig-
inal lattice to the C++ parser structure object, which would
then be simply converted to AML using the UAP.

MATLAB C API

Lucretia, and, therefore, the FS, are Matlab toolkits,
which means that the beamline description will be stored
in memory as Matlab data structures. Due to the binary na-
ture of this format (as compared to the ascii-text nature of
AML), more work is required to allow this to be converted
to the UAP parser structure.

Fortunately Matlab ships with an extensive C API that
allows easy access and control of all necessary Matlab data
structures.

Thus the process required to convert the Lucretia rep-
resentation to AML, is to use the matlab array manipula-
tion functions to extract the relevent data from each data
structure, convert this to the UAP parser object using UAP
methods, and then call the UAP functions to write this out
as a text-based AML file.

This will be coded into a C++ function, which will then
be wrapped, using the Matlab C API, in such a way that it
is callable as a standard Matlab executable (such functions
are known as mex-files).

LUCRETIA2AML

Lucretia2AML is the name of the executable written to
perform the task of conversion between the FS, Matlab-
based, format, and AML. As explained in previous sec-
tions, it is written in C/C++, and includes functions and
methods included from the UAP and Matlab C/C++ li-
braries.

The following code snippet shows the Lucretia represen-
ation of a sector-bend as indicated at the Matlab command
line, and it can be seen that the requirement to have a cen-
trally located marker makes the splitting of this magnet
necessary. While this is entirely accurate from the point

of view of tracking, it is considered a little untidy from the
point of view of being a precise representation of the beam-
line since the physical magnet is one device, not two.

ans =
Name: ’KEX1A’

S: 0
P: 1.300

Class: ’SBEN’
L: 0.2500
B: [0.108 0]
dB: 0

Angle: 0.0025
EdgeAngle: [0 0]

HGAP: [0.0063 0.0063]
FINT: [0.5000 0]

EdgeCurvature: [0 0]
Tilt: 0

PS: 66
Offset: [0 0 0 0 0 0]
Girder: 0

TrackFlag: [1x1 struct]
Slices: [1 3]
Block: [1 3]

ans =
Name: ’IP01’
Class: ’MARK’

S: 0.2500
P: 1.3000

Block: [1 3]

ans =
Name: ’KEX1B’

S: 0.2500
P: 1.300

Class: ’SBEN’
L: 0.2500
B: [0.108 0]
dB: 0

Angle: 0.0025
EdgeAngle: [0 0.0050]

HGAP: [0.0063 0.0063]
FINT: [0 0.5000]

EdgeCurvature: [0 0]
Tilt: 0

PS: 66
Offset: [0 0 0 0 0 0]
Girder: 0

TrackFlag: [1x1 struct]
Slices: [1 3]
Block: [1 3]

Thus we see that one element needs three Lucretia ob-
jects to be fully represented. The following shows the same
sector-bend in AML after conversion using Lucretia2AML,
and it can be seen to be much more compact, despite con-
taining additional information (in the form of its orientation

Proceedings of PAC09, Vancouver, BC, Canada FR5REP023

Controls and Operations

T04 - Control Systems 4815



with respect to the design orbit).

<element name = "KEX1A">
<bend>
<g_u design = "0.433633" err = "0" />
<e1 design = "0" />
<e2 design = "0.005" />
<h_gap1 design = "0.00635" />
<h_gap2 design = "0.00635" />
<f_int1 design = "0.5" />
<f_int2 design = "0.5" />
<h1 design = "0" />
<h2 design = "0" />
<orientation origin = "CENTER">
<x_offset design = "0" />
<x_pitch design = "0" />
<y_offset design = "0" />
<y_pitch design = "0" />
<s_offset design = "0" />
<tilt design = "0" />

</orientation>
</bend>
<length design = "0.5" />
<marker name = "IP01" />

</element>

With the completion of Lucretia2AML, it was necessary
to test the lattice, however, without a reliable method with
which to convert the lattice back to Lucretia, it was not
possible to do that at this stage. Successful tests were com-
pleted with the addition of a conversion routine between
AML and SAD.

AML TO SAD

One of the initial uses of the AML lattice was to convert
this to SAD format for use in a beamline tuning algorithm.

A pre-existing AML to SAD converter did not exist, so
it was necessary to implement one using the UAP. This has
now been released as part of the UAP.

Figure 2: Twiss parameters as calculated using SAD after
conversion from Lucretia.

Via a SAD-Parser written in C++, we translated the
AML lattice to a SAD lattice format representation, (i.e.

a SAD input file), of the beam line. The Lucretia model of
the machine is then translated to SAD in two steps. This
makes the flight simulator tools available to the SAD users.
By running SAD with the translated representation of the
ATF2 extraction line as input, we reproduced correctly the
twiss parameters at the IP and expected beam sizes, in par-
ticular betax*=4 mm, betay*=0.1 mm as shown in figure
2 and vertical beam size of sigmay*=34.8 nm. This is a
good test of the correctness for the codes translation chain:
Lucretia-AML-SAD. We are planning the converse opera-
tion to convert a SAD lattice format into AML.

RESULTS

With the implementation of a full chain of conversion
utilities between Lucretia, AML, and SAD, it is possible to
test the final result by comparing the predicted twiss param-
eters as calculated by Lucretia and SAD, and it was found
that there was excellent agreement.

REFERENCES

[1] G. White, et al, “A Flight Simulator for ATF2: A Mecha-
nism for International Collaboration in the Writing and De-
ployment of Online Beam Dynamics Algorithms”, EPAC ’08,
Magazzini del Cotone, Genoa, Italy, Jun 2008.

[2] A. Scarfe, R. Appleby, J. Jones, D.A. Kalinin, “ATF2 Spot
Size Tuning Using the Rotation Matrix Method”, this confer-
ence.

[3] Y. Renier, P. Bambade, J. Resta-Lpez, K. Kubo, G. White, A.
Scarfe, “Orbit Reconstruction, Correction, Stabilization and
Monitoring in the ATF2 Extraction Line”, this conference

[4] G. White, R. Tomas, K. Kubo, S. Kuroda, Y. Renier, J. Jones,
A. Scarfe, “Plans and Progress towards Tuning the ATF2 Fi-
nal Focus System to Obtain a 35nm IP Waist”, this conference

[5] A. Seryi, et al., “ATF2 Commissioning”, this conference.

[6] P. Tenenbaum, “Lucretia: A Matlab-based toolbox for the
modelling and simulation of single-pass electron beam trans-
port systems”, PAC 05, Knoxville, Tennessee, 16-20 May
2005

[7] D. Sagan, et al., “The Accelerator Markup Language and the
Universal Accelerator Parser”, EPAC 2006, Edinburgh, Scot-
land (2006).

[8] D. Bates, D. Sagan, A. Wolski, “The Universal Accelerator
Parser”, Proceedings Int. Comp. Accel. Conf. 2006, p 303,
(2006).

[9] K.Hirata, “An introduction to SAD”, Second Advanced ICFA
Beam Dynamics Workshop, CERN 88-04 (1988).

FR5REP023 Proceedings of PAC09, Vancouver, BC, Canada

4816

Controls and Operations

T04 - Control Systems


