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Abstract

An x-ray Free-Electron Laser (FEL) calls for a high
brightness electron beam. Generically, such a beam needs
to be accelerated to high energy on the GeV level and com-
pressed down to tens of microns, if not a few microns. The
very bright electron beam required for the FEL has to be
stable and the high quality of the electron beam has to be
preserved during the acceleration and bunch compression.
With a newly developed model independent global opti-
mizer [1], here we report study for the optimization of such
a generic machine. In this paper, we focus on the electron
bunch longitudinal parameters: the peak current, the cen-
troid energy and the RF cavities’ setting. Applicability is
detailed for the LINAC Coherent Light Source, an x-ray
FEL project being commissioned at SLAC.

TWO-STAGE COMPRESSION SCHEME

We model the compression scheme for a generic X-ray
Free-electron Laser (XFEL) via two-stage magnetic chi-
canes. This two-stage compression scheme is adopted in
the LINAC Coherent Light Source (LCLS) at SLAC.

Nominal Values

We assume that the electron bunch centroid energy out of
the RF-gun is E0 with an energy chirp (defined late) of h0.
The LINAC L1 between the gun exit and the first magnetic
chicane BC1 is running at phase ϕ1 with amplitude of V1.
Hence the centroid energy at BC1 is then

E1,0 = E0 + V1 cos(ϕ1). (1)

For electrons in the electron bunch, they see the RF wave-
front at different phase, hence with the internal coordinate
z, the electron z-dependent energy is

E1 = E0(1 + h0z) + V1 cos(ϕ1 + kz), (2)

where k is the RF wave number. Therefore along the elec-
tron bunch, the energy has a slope, which is referred to as
an energy chirp in this paper, and defined as h ≡ dδ(z)/dz,
where the relative energy deviation is defined as δ(z) ≡
[E(z) − En]/En, with En as the nominal energy. Hence,
after the first acceleration sections L1, the energy chirp on
the electron bunch evaluated at z = 0 is

h1 =
E0h0 − kV1 sin(ϕ1)

E1,0
. (3)
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The resulting compression factor is then C1 =
(1 + R56,1h1)−1, where R56,1 is the transport matrix
(5,6) element in BC1. Similarly, at the second chicane
BC2, we have

E2,0 = E1,0 + V2 cos(ϕ2), (4)

the energy chirp

h2 =
E1,0h1C1 − kV2 sin(ϕ2)

E2,0
, (5)

and the resulting compression factor as C2 =
(1 + R56,2h2)−1, where we assume that the LINAC
L2 between BC1 and BC2 is running at phase ϕ2 with
amplitude V2. At the undulator entrance

E3,0 = E2,0 + V3 cos(ϕ3), (6)

and the energy chirp is

h3 =
E2,0h2C2 − kV3 sin(ϕ3)

E3,0
. (7)

At this stage, the final rms bunch length is

σz2 =
L0

2
√

3C1C2

, (8)

where L0 is the initial bunch length out of the gun.

The Jitter

In reality, the machine has jitter, therefore, besides con-
sidering the nominal designed values, we need study how
the jitter affects the machine performance. Because of this,
to optimize the machine, the jitter has to be taken into con-
sideration. Here, we only study the LINAC phase jitter,
which is assumed to have a normal distribution as

f(δϕ) =
1√

2πσδϕ

e−δϕ2/(2σ2
δϕ). (9)

For simplicity, we further assume that the jitter is the same
everywhere in the accelerator cavities. This can be ex-
tended for real machine where jitter can be located by
studying the singular value decomposition (SVD) of a large
scale response matrix.

The Object Function

The nominal values which we need to look at are E3,0,
σz,2, and h3. Since the phases in the LINAC are jittering
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with the normal distribution in Eq. (9), we will minimize
the following object function

I =
〈
(σz2 − σz2n)2

〉
+

〈
(E3 − E3n)2

〉

+
〈
(h3 − h3n)2

〉

+ (σz2 − σz2n)2 + (E3 − E3n)2

+ (h3 − h3n)2 . (10)

To clarify the notation and to simplify the calculation, let
us work out one example in details as follows

〈
(σz2 − σz2n)2

〉
≡

∫∫
(σz2 − σz2n)2 d(δϕ1)d(δϕ2)

≈ (σz2 − σz2n)2 +
[
∂2(σ2

z2)
∂δϕ2

1

− 2σz2n
∂2(σz2)
∂δϕ2

1

]
σ2

δϕ1

+
[
∂2(σ2

z2)
∂δϕ2

2

− 2σz2n
∂2(σz2)
∂δϕ2

2

]
σ2

δϕ2
. (11)

For terms related to E3 and h3, the independent variables
are ϕ1, ϕ2, and ϕ3, therefore, we can approximate the ob-
ject function as

I ≈ W1,0(σz2 − σz2n)2

+
3∑

i=1

W1,i

[
∂2(σ2

z2)
∂δϕ2

i

− 2σz2n
∂2(σz2)
∂δϕ2

i

]
σ2

δϕi

+ W2,0(E3 − E3n)2

+
3∑

i=1

W2,i

[
∂2(E2

3)
∂δϕ2

i

− 2E3n
∂2(E3)
∂δϕ2

i

]
σ2

δϕi

+ W3,0(h3 − h3n)2

+
3∑

i=1

W3,i

[
∂2(h2

3)
∂δϕ2

i

− 2h3n
∂2(h3)
∂δϕ2

i

]
σ2

δϕi
, (12)

where Wi,j for i = 1, 2, 3 and j = 0, 1, 2, 3 are the
weight functions. It is worth to emphasize that by intro-
ducing quantities like (E3 − E3n)2 in the object function,
we in fact release the constraints on the designed values so
that the optimized final centroid energy, energy chirp, and
bunch length can vary near the designed values with sub-
script n. This is indeed necessary, since for example, in real
LCLS design the energy chirp after BC2 is taken out by the
LINAC geometric wakefield, which is not included in the
model calculation in this paper.

INVERSE MATRIX ITERATIVE GLOBAL
OPTIMIZATION

In accelerator community, model-based electron accel-
erator control is used for the maintenance of optimal pa-
rameters of an electron beam such as its orbit, size, and
shape, as well as machine parameters such as tunes. A
common approach for optimizing the machine is to form
a positive defined object function. Minimizing this ob-
ject function will lead to the optimal solution for operat-
ing the machine. In practice, finding the global-minimum

solution is a difficult task. Here, a global-minimum solu-
tion refers to the bounded multi-variable point having the
overall lowest objective function value. Normally, a non-
linear program has to be specifically developed to find the
global-minimum. Existing nonlinear programs can be clas-
sified into two basic types: One uses an analytical iterative
method and the other relies on a stochastic search method
such as a genetic algorithm. The inherent difficulty of us-
ing an iterative method to find the global-minimum solu-
tion is well known. In general, an iterative method requires
an initial guess solution. If this start solution is too far
from the global-minimum solution, the program will find
only a local-minimum solution. A common approach to
address this shortcoming is to use an ‘exhaustive search’
or a genetic algorithm. However, there are notable lim-
itations when using such methods-they are often difficult
and time consuming to use, particularly when used to find
the global-minimum solution to a large scale problem as is
the case for accelerator modeling. How to find a way to
overcome these limitations in the use of conventional non-
linear programs remains to be a challenge. Recently, Lee
proposed a nonlinear programming method which is an at-
tempt to mitigate these limitations [1]. We apply this newly
developed approach–Inverse Matrix Iterative Global Opti-
mization (IMIGO)–in this paper to find the optimal solu-
tion of a two-stage bunch compression scheme with a jitter
model in the LINAC accelerating cavity phase. We ask the
reader to refer to Ref. [1] for details of this approach.
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Figure 1: The object function evolves with iteration steps
with LINAC phase jitter.

OPTIMIZATION OF THE TWO-STAGE
SYSTEM

According to the LCLS FEL requirement, the final elec-
tron bunch centroid energy is set at 13.64 GeV and bunch
rms length at 10 μm entering the LCLS undulators. The ini-
tial parameters are E0 = 6 MeV, h0 = 0, and L0 = 1.5

√
3

mm with flattop current profile. As we describe in the pre-
vious section, the object function is a function of at least
eight variables: namely, the phase and amplitude of L1, the
L2, and the L3; and the R56 transport matrix element of
two chicanes, BC1 and BC2. Hence, minimizing the object
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Figure 2: The object function vs. L1 phase and amplitude
with LINAC phase jitter.
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Figure 3: The object function vs. L1 phase and L2 phase
with LINAC phase jitter.

function is a multi-dimension search. In Fig. 1, we show
how the object function evolves as a function of the itera-
tion steps. For example, shown in Fig. 2 is the dependence
of the object function on L1 phase and amplitude. Similar
dependence is found for L2 phase and amplitude. As yet
another example, in Fig. 3, the object function is shown as
a function of two phases: L1 phase and L2 phase. In the
above example, we set σδϕ = 0.1 S-band degree according
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Figure 4: The object function evolves with iteration steps
with no jitter in the system.

−1.5
−1

−0.5
0

0.5
1

−2

−1

0

1
0

200

400

600

800

1000

1200

L1 Phase (rad)

OBJECTIVE FUNCTION SURFACE PLOT

L2 Phase (rad)

O
B

JE
C

T
IV

E
 F

U
N

C
T

IO
N

Figure 5: The object function vs. L1 phase and L2 phase
with no jitter in the system.

to LCLS LINAC system operation status; R56,1 = −45.5
mm and R56,2 = −24.7 mm. The optimized solution is
to set L1 at −19.4 degree and L2 at −16.6 degree, this
sets BC1 to have C1 = 14.7 and BC2 to have C2 = 5.1.
The electron bunch final centroid energy is 13.64 Gev and
bunch rms length is 10 μm as required. To see how this
0.1 degree LINAC phase jitter affects the optimal values,
we zero the jitter and re-optimize. The corresponding ob-
ject function evolves as in Fig. 4. The object function as
a function of L1 phase and L2 phase is shown in Fig. 5,
where the sharp peak is missing. The optimized solution is
to set L1 at −19.0 degree and L2 at −18.8 degree, this sets
BC1 to have C1 = 12.4 and BC2 to have C2 = 6.0. Further
this study, we artificially increase the jitter to be σδϕ = 1
S-band degree, then IMIGO suggests that we set C1 = 16.2
and C2 = 4.6, which sets the final centroid energy at 13.64
GeV and bunch rms length at 10.1 μm.

In above studies, we do not take out the residual energy
chirp on the electron bunch after BC2, since in real LCLS
accelerator system, the LINAC after BC2 has a strong
wakefield, which can dechirp the electron bunch, so that the
electron bunch enters the undulator with no residual energy
chirp for FEL operation. Therefore, collective effects, such
as coherent synchrotron radiation, space charge, and vari-
ous wakefields are also important in real machine optimiza-
tion and operation. They can be incorporated in a paramet-
ric approach [2]. Besides, the electron bunch transverse
qualities can be optimized similarly with IMIGO. In that
regard, the magnetic elements, the electron beam trajec-
tory, and electron bunch transverse rms size will be treated
similarly as for the RF cavities, the electron bunch centroid
energy, and peak current in this paper. All these will be
reported in a later publication.
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