
HIGH-LEVEL ALICE SOFTWARE DEVELOPMENT

J. K. Jones, B. J. A. Shepherd, STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, UK

Abstract
The ALICE accelerator is a 35MeV energy recovery

linac prototype at Daresbury in the U.K. Due to the highly
experimental nature of the accelerator, there has been a
strong influence of accelerator physicists in the high-level
control software for the machine. Starting from the
underlying EPICS-based control system, a suite of
interactive commissioning software has been built using
traditional software approaches, such as LabVIEW, as
well as experimenting with interactive, rapid prototyping
programming languages, such as Mathematica. Using the
EPICS Channel Access protocols, the control system is
flexible and extensible. A wide range of tools can be used
to develop and debug high-level software, allowing
machine physicists to use the most appropriate and
familiar tools for software development.

INTRODUCTION
Modern accelerators require rich and complicated

control system software to work effectively. In recent
years with the introduction of channel access based
control systems, such as EPICS, it has become
commonplace to create and use control system written
outside of the traditional programming languages such as
C or Fortran. The use of high-level software has allowed
physicists to increasingly take more of a role in writing
the physics software they need to understand and manage
these accelerators. The ALICE accelerator is no
exception. With limited manpower it is increasingly
important that physicists write their own software, leaving
control systems engineers to concentrate on the
underlying systems.

The increasing ease of programming using software
packages such as MATLAB, Mathematica and
LabVIEW, has made this task simpler. All of these codes
now also allow rich GUIs to be produced in less time than
ever before.

This paper will attempt to give a broad overview of
some of the packages and applications that have been
written for use on ALICE, and attempt to highlight the
benefits of a rich-ecosystem of software that is made
possible with these high level software packages, as
compared to the more traditional approaches previously
used. In all cases we attempt to highlight the
appropriateness of the software choices that have been
made.

EPICS INTERFACES
The ALICE control system runs on EPICS and

VxWorks [1]. EPICS parameters are changed directly
using Linux consoles in the control room. There is also a
need for high-level software providing some abstraction
from the control system, in order to perform tasks such as

degaussing or emittance measurement, as well as
visualisation and data acquisition.

Initially, the ActiveX implementation of EPICS
Channel Access developed at ORNL [2] was used to
develop interfaces to EPICS. However, this software is no
longer supported, and the decision was made to develop
an EPICS interface in-house that could be used with a
wide variety of software platforms. This allowed us to
develop high-level software using several different tools,
according to the requirements of the task. A .NET
Channel Access interface was developed, allowing
control system parameters to be accessed and modified
from any Windows software platform [3].

Read access to the channel access server is limited to
computers connected to the laboratory network, which
effectively allows read access anywhere on the DL site.
This is a boon for software development, as it allows code
generation and testing away from the machine control
room. For security reasons write access is limited to
control room machines.

IMAGEVIEWER
Twenty YAG and OTR screens are located at various

points around the machine. Each screen has a CCD
camera pointing at it; the signals from these are brought
into the control room and digitised using a PCI frame
grabber card. A MATLAB program, imageViewer, has
been developed to interface to the frame grabber and
capture beam images for further analysis (Figure 1).

Figure 1: Screenshot of imageViewer.

The program also interfaces to the control system to
move each screen in and out, and to the multiplexer in the
control room to select which screen is viewed. It can
measure the beam position and size (horizontal and
vertical) using a Gaussian-plus-background least-squares
fit. All this information can be saved for later analysis,

FR5REP028 Proceedings of PAC09, Vancouver, BC, Canada

4826

Controls and Operations

T04 - Control Systems

and series of images can be automatically recorded along
with measured parameters from EPICS (for emittance
measurements, for instance).

MATLAB was chosen in this case because of the ease
of handling large datasets. Complex GUIs are
straightforward to build and maintain using GUIDE, and
the code was optimised for speed using the Profiler tool.
imageViewer is able to capture and process images at a
rate of about 3 Hz (the ALICE maximum repetition rate is
20 Hz). Better performance could be achieved by using
compiled code.

ONLINE MODEL
As part of the commissioning process it is important to

be able to analyse the machine in terms of standard lattice
parameters. To this end a standard model of the design
machine is implemented within Mathematica. The online
model is based on the original MAD model of the
machine, with dynamic corrections based on the latest
engineering and survey positions. This is especially
important for diagnostic positioning, where differences
between the model and the final engineering layouts can
be large. Analysis is performed either through the linear
lattice code MLC, coded in Mathematica, or through the
external MAD-8 code. Interaction with the external MAD
code is done through the MADInput package, which
automates the creation and running of MAD script files
and interprets the output into Mathematica formats. The
model is designed with ease-of-use in mind and utilizes
the advanced GUI building capabilities of Mathematica.
Interaction with the control system is controlled by simple
“Apply” and “Read” buttons, maintaining the
independence of the model from the machine until
required. The model can also display ‘expected’ beam
positions and sizes at BPM and OTR screens.

Figure 2: Online model main screen, showing the
quadrupole controls as well as BPM and OTR displays.

The use of external codes for analysis is important for
the ALICE machine due to its complexity. Currently
MAD-8 is implemented to enable continuity with the
original design model. However, issues surrounding the
treatment of RF focusing in the linac cavities has recently
become a concern. The MLC code is fully customisable
and allows easy modification of these terms, which
should allow a more complete model of the machine to be
built at a later date. It is also planned to implement an

interface to the ASTRA code to allow further online
modelling of the low energy section of the machine from
the gun to the exit of the booster cavity.

Calibration of the online model is essential to
maintaining parity with the machine. The online model
features a built in set of optimisation routines that allow
rapid fitting of many parameters on the machine.
Optimised solutions can be saved and re-loaded. This
should enable simple changes to the operating point of the
machine, and allow rapid re-optimisation of the machine
state as conditions change.

Figure 3: Optimisation screen.

OTHER SOFTWARE

Compression Chicane Tracking
Recent ALICE commissioning activity has focused on

setting up the THz beamline [4]. Steering the beam
through the compression chicane is effectively done
almost ‘blind’ due to the low intensity on the screen in the
centre of the chicane. Using measured field maps, a
model was put together in Mathematica to track a beam
through the chicane (Figure 4). A drawing of the vacuum
vessel is overlaid on the top to ensure the beam passes
safely. The notebook is linked to EPICS to update magnet
currents and BPM readouts. This simple tool has been
particularly effective in optimising the THz output from
the chicane.

Figure 4: Screenshot of the Compression Chicane
Tracking notebook.

Machine Status Web Server
During ALICE shifts, the work is logged using the

ELOG electronic logging software [5,6]. To facilitate a

Proceedings of PAC09, Vancouver, BC, Canada FR5REP028

Controls and Operations

T04 - Control Systems 4827

simple method of recording the machine parameters, a
small web server was developed using AutoIt [7]. This
server runs on one of the control room consoles, and
constantly monitors the status of various control system
parameters. By clicking a button in the ELOG editing
screen, the current status of a section of the machine
(magnet settings etc.) is requested from this server using
AJAX, and a table of parameters is pasted into the log. In
addition, a text file containing these parameters is created
on a local file server; this can later be used to restore
settings using BURT [8].

BPM Viewer & visualSteer
Using LabVIEW, the BPM Viewer was developed to

provide a graphical display of the horizontal and vertical
BPM readouts. visualSteer can be used in tandem with
this to aid with steering a beam around the machine using
the H&V corrector magnets. Clicking and dragging on the
display in the visualSteer window adjusts the H&V
corrector settings simultaneously. Figure 5 shows
screenshots of both programs.

LabVIEW was chosen in this case due to the relative
simplicity of the task, and the ease of developing GUIs in
this environment.

Figure 5: Screenshots of visualSteer (left) and BPM
Viewer (right).

Twiss Parameter Determination
As part of the online-model calibration, a simple image

analysis and characterisation program has been developed
in Mathematica. The seamless integration with both the
MAD and MLC codes makes it trivially easy to compute
the R-matrix values at different quadrupole strengths and
compare these to a series of related YAG images, and
thus determine the Twiss parameters. Mathematica’s
powerful image analysis routines can automate the
processing of images, and its interaction with the control
system, via EPICS, should allow a fully automated Twiss
parameter determination at any YAG screen in the
machine. Currently, however, the ActiveX based image
grabber controls cannot be accessed directly from
Mathematica, though this is a task actively being worked
upon.

COLLABORATIVE DOCUMENTATION
Documentation for the ALICE machine has been

implemented using the MediaWiki web server [9,10].
This ‘wiki’ software allows anyone on the project
(suitably authorised) to edit the ALICE documentation,

using only a web browser. For basic editing, no specialist
knowledge of HTML markup is required, and articles can
be linked together and categorised easily. Changes can be
easily tracked – each page has a history of changes and
mistakes can easily be corrected. Using this tool, ALICE
documentation is accessible to anyone with a web
browser, and can be kept accurate and up-to-date.
MediaWiki is in wide use across the internet and at least
one other accelerator laboratory [11].

CONCLUSIONS
The use of an EPICS control system on the ALICE

machine, and the corresponding ease of data extraction
within a multitude of high-level coding platforms, has
allowed the rapid development of useable machine
software. This software is primarily created without the
interaction of control-systems engineers, instead by
physicists using the machine, and in the software and
using the methods they are most familiar with. This has
effectively lowered the barrier of entry for scientists who
ordinarily would not write such software, and can
generate a suite of packages that are both useful and time-
efficient to produce.

The use of many different software programming
languages allows the restrictions or disadvantages of any
one programming language to be mitigated, and helps to
ensure that software is written in the most appropriate
manner. All of the software demonstrated in this paper
takes advantage of the differing programming paradigms
inherent in these different software packages, to create
software that is relevant and efficient to the task at hand.
With the introduction of advanced GUI building
capabilities in all of these packages, the inherent
difficulties in using a wide number of packages has
effectively been negated, and control software
programming is no longer strictly tied to the ‘lowest
common denominator’ programming language.

REFERENCES
[1] A. Oates et al, “Development of the Control System
for ERLP”, ICALEPCS, Geneva, Oct 2005, PO1.044-6.
[2] http://ics-web.sns.ornl.gov/kasemir/axca/index.html.
[3] G. Cox, “A .NET Interface For Channel Access”,
PCaPAC08, Ljubljana, Oct 2008, TUP022, p134-136.
[4] S.L. Smith, “Progress on the Commissioning of
ALICE, the ERL Based Light Source at Daresbury
Laboratory”, these proceedings, TU5RFP083.
[5] S. Ritt, ELOG software: http://midas.psi.ch/elog.
[6] ALICE eLog: http://www.4gls.ac.uk/erlp/elog/.
[7] AutoIt script language: http://www.autoitscript.com.
[8] EPICS Back Up and Restore Tool (BURT):
http://www.aps.anl.gov/epics/extensions/burt/index.php.
[9] MediaWiki software: http://www.mediawiki.org/.
[10] ALICE wiki: http://projects.astec.ac.uk/ERLPManual/.
[11] Niedziela et al, “Dynamic Collaborative
Documentation At The BNL Collider-Accelerator
Department”, PAC07, Albuquerque, 2007, MOPAS098.

FR5REP028 Proceedings of PAC09, Vancouver, BC, Canada

4828

Controls and Operations

T04 - Control Systems

