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Abstract 
Fixed-Field Alternating-Gradient (FFAG) accelerators 

span a large range of momenta and have markedly 

different reference orbits for each momemtum.  In the 

non-scaling (NS) versions proposed for rapid acceleration, 

the orbits are geometrically dissimilar. In particular, none 

of the orbits within bending magnets are arcs of circles 

and this complicates tune calculation. One approach to 

NS-FFAG design is to employ alternating combined-

function magnets[1]. Second generation NS-FFAGs 

designs attempt to mitigate the variation of betatron tunes; 

and careful calculation of orbits and tunes is essential. 

Starting from an analytic magnetic potential for the 

combined-function magnet, we elucidate expressions for 

orbit calculation which are second order in the cyclotron 

motion and arbitrary order in the momentum (no 

expansion is used). 

MAGNET FIELD 

We adopt a cylindrical polar coordinate system with 

origin at the magnet centre of curvature, radius r, 

azimuthal angle , and vertical displacement z from the 

mid plane. Let the curvature at the reference momentum 

pc be rc and the field strength and gradient be B0 and B1. 

Naively, it might be thought that the field components are  

 . 

The curl is zero, but there is a first order divergence: 

. A better approximation is needed:  

 .      (1) 

The curl is zero, and there is a 2nd order divergence 

 which is very small. This 

field is obtained from a potential function, and hence so 
may be obtained the pole shape as a function of radius. 
 

  

Figure 1: Pole shapes: focusing (LHS), defocusing 

(RHS). The asymptote denotes the lower and upper 

range, respectively, for which stable orbits may be 

found. Blue and red lines denote north and south poles, 

respectively. B0= -5 Tesla, B1=±5 T/m and rc=10 metre. 

*TRIUMF receives federal funding via a contribution agreement through 

the National Research Council of Canada. 

REFERENCE RADII 

Although they are not necessarily equilibrium orbits, there 
are (circular) arc-shaped trajectories of radius ru at other 

momenta pu=pc+ p. Let . The radius is 

given by the two solutions of a quadratic equation: 

                              (2)

When =0 and p=0, the solutions are equal. Hence you 

cannot take it for granted that –B0/B1 is distant from rc. 

Hence, use Eq. (2) for >0 and the 2nd equation for <0. 

EQUATION OF MOTION 

The FFAG is composed of a sequence of combined 

function magnets (CFMs) with forward and reverse 

bending and alternating gradients, and also drift spaces. In 

general, the equilibrium orbit at any momentum does not 

lie on an arc through the CFM. Instead, the particle moves 

with a displacement and divergence relative to the 

reference arc for each momentum. The reference arc is 

swept out at angular velocity . To find the equilibrium 

orbit for given input conditions to the CFM, we take a 

Cartesian coordinate system  and embed it in the 

rotating reference frame. x, s, z are aligned with r, , z 

respectively of the cylindrical system, with the origin x=0 

at r=ru. When the equations of motion (for perturbations 

with respect to the rotating cylindrical system) are written 

in the Cartesian system, the usual Coriollis forces will 

appear. In addition, one must write the magnetic field 

components in terms of the new coordinates. The field on 

the reference arc is: 

 .              (3) 

The incremental field at a displaced orbit is 

 (4) 

Let and  

where Bz is evaluated at ru in the mid plane. We introduce 

the time derivative where c is the 

particle speed.  
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Linearized Equations 

To first order, the equations of motion are:  

 (5) 

Take positive/negative sign for focusing/defocusing and 

likewise for k. These coupled equations are exactly 

soluble, and their solutions form the basis for higher-order 

expansions. E.g. in a CFM that is horizontally focusing: 

  

where the matrix  

and . 

Higher Order 

To second order, the equations of motion are:  

 (6) 

Take the plus/minus sign for horizontally 

focusing/defocusing field gradient. 

Green’s Function Solution 

The procedure for solution of these equations is to 

move the 2nd order terms to the right of the equality, to 

substitute the known solutions to the linear equations, and 

then to treat the system as if there were known driving 

terms on the right, and then to solve for  using 

the Green’s function for the linear system. Such a solution 

is not self-consistent. However, the errors are of 3
rd

 order 

and will be small provided that  remain small. 

One advantage of this approach is that the Green’s 

functions can be obtained analytically in closed form in 

terms of trigonometric and hyperbolic functions. The 

expressions are too lengthy to record here. However, they 

have been incorporated into a computer program[2] which 

evaluates them automatically for arbitrary values of all 

parameters. 

It is worth pointing out that in the case of a pure 

bending magnet, k=0, that the linear equations are exact 

and the particle speed is conserved in the matrix solution 

above. However, when a field gradient is present, the 

linearized equations, although the matrix has unity 

determinant, do not conserve the particle velocity.  A 

consideration of the Lorentz forces explains this situation. 

For the flat field, the forces are . When the 

gradient is added, the force becomes , 

and discarding the 2
nd

 order terms amounts to 

destroying the energy conserving property of motion in a 

magnetic field. This notion is explored in the following 

examples which compare the results of particle tracking 

through CFMs with linear and 2
nd

-order transformations 

of the input coordinates. 

EXAMPLES 

When graphed, we can compare second order results 

with those obtained using linearized equations of motion.  

For definiteness, we take the case of a focusing CFM with 

B0= 5 Tesla and B1= 5 T/m. The reference momentum is 

pc= 15 GeV/c and the radius of curvature rc= 10.00692 

metres. A 16 GeV/c proton is injected with an orbit offset 

x= 1cm compared with the arc radius ru= 10.06737. 

Somewhat artificial, but a good test, we consider a CFM 

with 360
o
 bending angle and three orbits (i.e. a total bend 

of 10 radians.) After only three orbits around the CFM, 

there is apparent a discrepancy between the two results. 

We see clearly (Figs. 2 and 3) that the second order 

equations are able to account for the longer trajectory of a 

''wiggling'' orbit which causes an off-arc particle to slip 

behind the reference particle. The linearized motion 

shows no sign of this occurring and also shows a greater 

variation in the total speed of the particle, see Fig.4. 

 

 

Figure 2: Parametric plot of the position coordinates of 

with respect to the reference particle. 

 

It may be wondered why the particle slips in azimuth s, 

but not radius x. In the case of a pure bending field, the 

equations of motion for x and s are symmetric, 

 and . However, for the case 

of a gradient field, the x motion is supplemented by a 

restoring force [see the linearized equations (5) above] 

that tends to confine the motion and makes it resistant to 

perturbation by the 2
nd

 order terms. No such restoring 

force appears in the s motion, and so it is more easily 

perturbed. Hence when the second order term  is 
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added, it will influence more strongly the motion in s than 

that in x. As the gradient is reduced in magnitude, so the 

influence on s/x will become less/more pronounced, 

respectively. In the limit k  0, there is no restoring 

force; but there is also no perturbation because . 

 

 

Figure 3: Longitudinal displacement s versus time. 

 

 

Figure 4: Deviation of speed from unity versus time.  

 

 

Figure 5: Parametric plot of the velocity coordinates x’ 

versus s’ with respect to the reference particle. 

This line of reasoning implies that for a horizontally 

defocusing CFM, it is the x motion which will be more 

strongly affected by the perturbing forces, because there is 

an anti-restoring force, . Repeating the particle 

tracking exercise for a defocusing CFM, when comparing 

second and first order formulations, one expects to see the 

larger discrepancy to appear in x(t), rather than s(t), 

because the negative restoring force in the radial equation 

of motion makes it more susceptible to perturbation by the 

second order terms . This expectation is 

confirmed in figures 6 and 7: position versus time graphs 

of motion in a defocusing CFM with magnetic field 

gradient B1 of 1 Tesla per meter and azimuthal angular 

extent of 1.0 radian. 

 

 

Figure 6: Longitudinal displacement s versus time in a 

defocusing CFM. 

 

 

Figure 7: Radial displacement x in a defocusing CFM. 
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