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Abstract 
This paper describes tracking studies of FFAGs and 

radial-sector cyclotrons with reverse bends using the 
cyclotron equilibrium orbit code CYCLOPS. The results 
for FFAGs confirm those obtained with lumped-element 
codes, and suggest that cyclotron codes will prove to be 
important tools for evaluating the measured fields of 
FFAG magnets. The results for radial-sector cyclotrons 
show that the use of negative valley fields would allow 
axial focusing to be maintained, and hence allow intense 
cw beams to be accelerated, to energies ≈10 GeV. 

INTRODUCTION 
Isochronous cyclotrons and FFAGs are both members 

of the fixed-magnetic-field or cyclotron family [1]. Thus 
the former may be regarded as simply a special case of 
FFAGs where the orbital period is fixed, and the latter as 
just sector-focused ring synchrocyclotrons. Nevertheless, 
they have been developed by two different communities, 
which have sometimes taken different approaches in their 
work. The studies described here bridge this gap to some 
extent by exploring the use of techniques developed for 
one type of accelerator in the other: 
1. Applying isochronous cyclotron orbit codes to FFAGs. 
2. Using reverse-bend magnets (as in radial-sector 

FFAGs) to enhance the axial focusing and extend the 
energy range of radial-sector isochronous cyclotrons. 

FFAG TRACKING STUDIES USING THE 
CYCLOTRON CODE CYCLOPS 

In recent years FFAG designs have generally been 
developed using synchrotron lattice codes – or adaptat-
ions of them – perhaps because their designers have 
mostly come from a synchrotron background. But 
synchrotron codes are poorly adapted for use in 
accelerators with fixed magnetic fields, where the central 
orbit is a spiral rather than a closed ring, so that the 
magnetic field must be characterized over a wide radial 
range. Special arrangements must therefore be made to 
deal with momentum-dependent effects accurately. 

Here, we report studies made with the cyclotron orbit 
code CYCLOPS [2], which tracks particles through mag-
netic fields specified on a polar grid and determines the 
equilibrium orbits (E.O.) at each energy and their optical 
properties. This has the advantages of: 
 being designed for multi-sector machines with wide 

aperture magnets; 
 allowing simultaneous computation of orbit properties 

at all energies; 

 having the capability of tracking through measured 
magnetic fields; 

 the availability of its sister code GOBLIN for studies of 
accelerated orbits. 
We have studied three very different FFAG lattices. 

F0D0-2  
Our first test of CYCLOPS on an FFAG lattice was made 

with F0D0-2, an 82-cell lattice designed by J.S. Berg [3] 
for accelerating muons from 10 to 20 GeV. Both the 
positive-bending D and negative-bending F are sector 
magnets, in which the field magnitudes decrease outwards 
with constant gradient. (This is a “linear non-scaling” or 
“LNS” design, characterized by betatron tunes which fall 
sharply with energy.). The CYCLOPS results agreed very 
closely with Berg's for all the parameters examined (orbit 
radius, beta functions, tunes, and orbit time) over the full 
energy range, as illustrated in our initial report on these 
studies [4]. Hard magnet edges were assumed, but it was 
possible to get good E.O. solutions provided a fine 
enough (400 × 800) r-θ field grid was used for the lattice 
cell. 

Tune-Stabilized Medical FFAG  
Johnstone and Koscielniak have developed an LNS 

FFAG for cancer therapy with 18-400 MeV/u carbon ions 
[5]. Like Berg’s, this is based on a F0D0 lattice, but uses 
edge- as well as gradient-focusing to minimize the tune 
variation. But non-radial hard magnet edges proved tricky 
to model with a polar grid – and, even with 37 million 
grid points, led to noisy results from CYCLOPS – typically 
±0.3 in the tunes. To smooth the field’s hard edges we 
have introduced a sinusoidal field variation – an approx-
imate but effective procedure (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: Tunes in  the tune-stabilized  medical FFAG 

computed by CYCLOPS. 
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IFFAG  
Rees [6] has proposed an isochronous radial-sector 

FFAG design (IFFAG) for accelerating muons from 8 to 
20 GeV. This employs a novel five-magnet “pumplet” 
0doFoDoFod0 lattice cell (from the Welsh word pump, 
pronounced pimp, for five), where the d magnets (and Fs 
at low energy) are reverse bending, and the d, F and D 
magnets each have special field profiles B(r). With long 
drift spaces between the d magnets, and N = 123 cells, the 
circumference is 1255 m.  

Méot et al. [7] have used the ray-tracing code ZGOUBI 
(originally developed for the study and tuning of mass 
spectrometers and beam lines.) to follow muons through a 
simulated field grid and confirm the orbit properties Rees 
predicts: good isochronism, and tunes that rise gently with 
energy, though νz exhibits some deviations (Figure 2). 

Achieving isochronism and vertical focusing at such 
high energies is a remarkable feat. Isochronism at a 
kinetic energy of (γ - 1)m0c2 implies that the average field 
Bav ≡ 〈B(θ)〉 ∼ γ has a large positive radial gradient, con-
tributing strong vertical defocusing 

Δνz
2 = -k = -β2γ2,             (1) 

where the field index k ≡ (r/Bav)dBav/dr. For muons at 
20 GeV, β2γ2 ≈ 36,000! Cyclotrons and FFAGs convent-
ionally overcome this gradient defocusing by edge and 
spiral focusing: to first order [8], 

νz
2 ≈ -k + F2(1 + 2tan2ε),        (2) 

where the magnetic flutter F2 ≡ 〈(B(θ)/Bav – 1)2〉 and ε is 
the spiral angle. But in Rees’s lattice ε  = 0, and F2 is only 
≈30 at 20 GeV. The key to this apparent inconsistency is 
that (2) was derived for two-magnet cells: by using more 
magnets, Rees has gained additional free parameters. 

Because of its greater complexity, this lattice presented 
a greater challenge to producing an adequately detailed 
field map for CYCLOPS. With hard edges the tune values 
were sensitive to mesh size, and at some energies it was 
impossible to obtain orbit closure. Again the use of 
sinusoidal edges was effective. The tunes obtained with 
these (Figure 2) agree fairly well with those published by 
Rees and Méot, except above 15 GeV. We are currently 
checking our field grid to confirm that it does accurately 
represent Rees’s lattice. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HIGH-ENERGY CYCLOTRONS 
In the past, designs have been presented for isochron-

ous ring cyclotrons to accelerate protons from 0.5 to 
3.5 GeV and from 3.5 to 10 or 15 GeV [9, 10], to provide 
cw, and therefore high-intensity, beams at these energies, 
using the 500-MeV TRIUMF cyclotron as injector. These 
designs relied on spiral edge focusing to supplement the 
flutter factor in (2); axial stability was confirmed by 
tracking orbits through simulated magnetic fields using 
CYCLOPS. The feasibility of extracting the beam 
efficiently by exciting a radial resonance was also 
confirmed [11] using the general orbit code GOBLIN.  

The high spiral angles ε required, however, lead to 
various practical problems: strong distorting forces on the 
magnet coils (particularly if these are superconducting), 
restricted space for rf cavities and injection and extraction 
equipment, and strong radial kicks during acceleration.  

Cyclotrons with Reverse Bends 
In view of Rees’s intriguing results, and the practical 

difficulties presented by superconducting spiral magnets, 
it seemed interesting to explore how far the energies of 
radial-sector cyclotrons could be raised by inserting 
reverse-bend magnets to increase the flutter. This being 
an exploratory study, we made the simplest possible 
assumptions: N radial sectors, hard-edge magnets, no drift 
spaces, and equal but opposite hill and valley fields: 

     Bh = –Bv = B(r) = γB0 .   (3) 
The resultant cyclotron parameters are derived in [4]. 
Here we quote the main results. If the angular width of 
the hills is denoted by 2πh/N, then the magnetic flutter 
(the same at all energies) is given by: 

F2 = ¼(h – ½)–2 – 1 ,  (4)  
so to maintain positive axial focusing up to some maxim-
um energy γm , but no further, (1) and (2) tell us that: 

 h – ½ = 1/2γm.            (5) 
Assuming that the maximum magnetic field available, Bm, 
is applied at maximum energy γm, then the “cyclotron 
radius” Rc (the constant factor in R = βRc) is given by: 

    Rc = (m0c/e)γm
2/Bm .  (6) 

The recipe for hill and valley field strength is:  
   B(r) = (Bm/γm)/ √{1 – (r/Rc)2}.            (7) 

Note that Symon's circumference factor [8], the ratio of 
the actual circumference to that obtainable with the same 
maximum field, but no reverse bends: 

         C = γm .  (8) 
At first we chose the number of sectors N ≈ 3γm so that 
νr ≈ γ remains well below the N/2 resonance. 

As examples we have studied two cases with specif-
ications similar to those of the spiral-sector ring cyclo-
trons mentioned above: one accelerating protons from 1 
to 4 GeV, and the other from 3 to 14 GeV. We assume a 
maximum magnetic field Bm = 5 T. In the first case, 
γm = 5 leads to N = 15, h = 0.6, F2 = 24, and Rc = 15.65 m. 
CYCLOPS was then run on a simulated magnetic field grid 
with B(r) calculated from (7). The CYCLOPS results [4] 
showed that both the flutter and the axial tune were lower 
than predicted, νz becoming imaginary above 3.4 GeV, 
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Figure 2: Betatron tunes in the isochronous IFFAG, as 
computed by Rees, Méot and CYCLOPS. 
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where F2 had dropped to 10.9. This occurs because the 
orbit scalloping causes the field seen by a proton to vary, 
rather than being piecewise constant, as the derivation had 
assumed. To remedy this, we produced a new field map 
with the B contours shaped to match the orbit arcs: 
    B(r,θ) = (Bm/γm))/ √{1 – (Rhv/Rc)2}  (9) 
where Rhv(r,θ) is the radius at which the orbit through 
(r,θ) crosses the hill-valley boundary. With this, the full 
theoretical flutter was obtained – but the focusing was too 
strong, both vertically and radially (Figure 3)! In fact the 
N/2 resonances (ν = 7.5) were reached at only γ = 3.5. The 
CYCLOPS tunes, though, did agree well with those obtain-
ed from a lumped-element model. The lens strengths are 
apparently too great for the assumptions behind (2) (and 
the corresponding radial equation νr ≈ γ) to remain valid. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 Two methods of raising the top energy are possible. 

The first is to widen the hills, which reduces Rc, νr and νz. 
The lumped-element model shows stable orbits up to 
3 GeV with h = 0.65, while Rc drops to 6.5 m (Figure 4). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The second is to increase the number of sectors. With 
N = 30 and the original h = 0.6 the νr = 15 resonance is 
raised above 5.5 GeV, while Rc remains at 14.9 m. The 
tunes computed by CYCLOPS are shown in Figure 5.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the 3-14 GeV cyclotron we took γm = 15, leading to 

N = 45, h = 0.533˙, F2 = 224, and Rc = 140.83 m. The 
tracking results for B(r) independent of azimuth showed 
similar behaviour to those for the low-energy ring, with νz 
dropping to zero at 10.8 GeV [4]. We have yet to study 
the effect of tailoring the field contours to the orbits, but 
anticipate the same benefits as in the lower-energy case. 

The radii for both rings are of course considerably 
larger than those for their spiral-sector counterparts (10 m 
and 41 m respectively), and in practice would be enlarged 
further by the inclusion of drift spaces for the rf cavities.  
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Figure 3: Tunes in a reverse-bend cyclotron with constant 
fields on orbit (N = 15, h = 0.6, Rc = 15.65 m). 
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Figure 4: Tunes in a reverse-bend cyclotron with constant 
fields on orbit (N = 15, h and Rc as shown). 

Figure 5: Tunes in a reverse-bend cyclotron with constant 
fields on orbit (N = 15, h = 0.6, Rc = 15.65 m).
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