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Abstract

Using the principle of energy balance we develop a 2D
theory for calculating growth rates of instability in a two-
cavity model of a sheet beam klystron. An important in-
gredient is a TE-like mode in the gap that also gives a
longitudinal kick to the beam. When compared with a
self-consistent particle-in-cell calculation, with sheet beam
klystron-type parameters, agreement is quite good up to
half the design current, 65 A; at full current, however, other,
current-dependent effects come in and the results deviate
significantly.

INTRODUCTION

The development of sheet beam klystrons (SBK) for ac-
celerator applications has been an ongoing area of research
at SLAC National Accelerator Center for over a decade.
The most recent developments have been for an L-band
device capable of generating greater than 10 MW of RF
power and an efficiency of over 70%. The beam stick
(the klystron but without cavities) has been fully simulated
and designed and should produce hot test results sometime
soon. The beam transport is calculated using the particle-
in-cell (PIC) code MAGIC3D [1], a MagNet 3D simula-
tion of the PPM structure, and a beam imported from a 3D
MICHELLE simulation of the gun.

Significant amount of calculation has also been com-
pleted for the full power 7-cavity sheet beam klystron. 1D
and 2D RF simulations both predict the SBK will meet
specifications. Final validation of the design with RF was
attempted in 3D simulation. However, instabilities were
observed as is shown in Fig. 1.

Figure 1: Magic3D simulation of a 7-cavity (at the white
stripes) SBK in longitudinal view, showing an instability,
with beam impinging on the walls. The sheet beam is seen
from its narrow side in red; it moves from left to right.

In this report, to analyze the instability we will employ
a simplified, 2D two-cavity model of the SBK. Note that
some kind of analysis of a similar SBK instability has been
performed by Yu and Wilson [2]. At the end we will com-
pare results of three calculation methods: the first two—the
analytical and numerical methods—both employ an energy
balance equation to obtain growth rates of instability; the
third is the self-consistent PIC method of MAGIC.
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The 2D two-cavity model that will be used in the calcu-
lations is sketched in Fig. 2. The length of the gap—the
separation between the two cavities—is denoted by l, and
the beam-pipe height by h. The width of the gap in the
klystron, w, is much larger than the height, thus justifying
the 2D approximation. The nominal beam kinetic energy
Ek = 115 keV and the beam current, I = 130 A. Important
beam and structure parameters are collected in Table 1. In
this report we will work in Gaussian units.
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Figure 2: 2D two-cavity model used for the calculations.

Table 1: Parameters used in the simulations.
Parameter Value Units

Beam Kinetic Energy, Ek 115. keV
Beam Current, I 130. A
Ratio V ′

z/E0 0.67
Length of gap, l 133.5 mm
Height of gap, h 7.5 mm
Width of gap, w1 145 mm

THEORY

The instability mechanism can be described qualitatively
as follows: Let us suppose there is a TE-like mode present
in the gap. A part of the beam enters the gap on axis with
zero slope, and through the transverse fields it will arrive
at the end of the gap off axis. The mode has non-zero lon-
gitudinal electric field near the end of the gap that depends
on vertical position (it is zero on axis). Depending on the
phase of the beam part of interest, the beam either puts en-
ergy into the mode or takes energy out of it through this
field. If, when averaging over the entire beam, the net ef-
fect is to put energy into the mode, then the beam will drive
the mode to larger amplitudes and there is instability.

For our analysis we let the +z-axis follow the symmetry
line of the beam pipe to the right in Fig. 2 (with z = 0 at the
beginning of the gap), +y is in the vertical direction, and
+x points into the plane. The amplitudes of the non-zero
field components Ey , Ez , and Bx of the TE11-like mode
in the 2D structure were obtained using SUPERFISH and
are given in Fig. 3. Note that (i) the overall scale factor
of the fields is not important and does not factor into our

1Ours is a two-dimensional model, and we cannot distinguish the beam
width from the gap width.
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final result, (ii) Ez is zero on axis and varies linearly with
small offset (in our case an offset of y0 = 1 mm was used),
and (iii) electric field is 90◦ out of phase with the magnetic
field. For our analytical calculations we use sinusoidal ap-
proximations to Ey and Bx (the dashed curves in the plot),
and replaceEz with a delta-function voltage kick at the end
of the gap. That is, the transverse fields are given by

Ey = E0 cos(ωt) cos(ωz/c) ,
Bx = −E0 sin(ωt) sin(ωz/c) , (1)

where t is time, ω = πc/l = 7.63 × 109/s is the frequency
of the mode, and c is the speed of light.
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Figure 3: Fields in the 2D, 2-cavity model (solid), and the
sinusoidal approximations of Ey and Bx (dashes).

Let us now consider a particle that enters the gap at time
t = τ , and moves at velocity v0 in the +z direction (for a
beam energy of 115 keV, v0 = 0.58c). The voltage kick it
experiences at the end of the gap, for small y, is

FVz(y) cos(ωt+ ψ) ≈ FV ′
zy cos(ωt+ ψ) , (2)

where V ′
z = (dVz/dy)|y=0 ≈ (

∫
Ez dz)/y0, where the

integral over Ez is taken over the downstream spike (see
Fig. 3); where the phase ψ and factor F are given by

[
c1
c2

]
=

∫
Ez(z)

[
sin[ ω

v0
(z − l)]

cos[ ω
v0

(z − l)]

]
dz ,

ψ = tan−1(c1/c2) , F =
√
c21 + c22

/∫
Ez dz . (3)

We assume that the mode amplitude E0 is small, of the
first order. The transverse field of the mode will deflect
the particle in the y direction. In addition to the fields of
the mode, there is also a focusing magnetic field, which we
approximate as a smooth focusing channel with betatron
frequency of oscillation ωβ . The transverse motion of the
particle is governed by the equation

d2

dt2
Y (t) + ω2

βY (t) =
e

mγ

(
Ey +

v0
c
Bx

)
, (4)

where e is charge and m is mass of the electron, and γ is
the Lorentz energy factor. The z coordinate of the particle

is given by z = v0(t− τ) (we take v0 to be fixed), so Eq. 4
can be considered an equation of time only. Note that for
our numerical results we numerically integrate Eq. 4 using
the numerical fields shown in Fig. 3.

For initial conditions, we assume the electron enters the
gap on axis with zero slope, i.e. Y (τ) = Y ′(τ) = 0. Then
the solution to Eq. (4) is Y (t) = ReỸ (t), with

Ỹ (t) =
2∑

n=1

Ane
(−1)n+1iφ+iΩnτ

ω2
β − Ω2

n

[
eiΩn(t−τ)

− cos(ωβ [t− τ ]) − i
Ωn

ωβ
sin(ωβ [t− τ ])

]
,

An =
eE0

2mγ
[1 + (−1)nβ] , Ωn = ω [1 + (−1)nβ] ; (5)

φ = ωτβ and β = v0/c.
We now need to calculate the energy balance between the

mode and the particles. The energy E that a particle gains
(or loses) is caused by the longitudinal field in the mode at
the exit of the gap and by the vertical field throughout the
gap. The first contribution can be calculated using Eq. (2)
where y is substituted by the function Y taken at exit time
T = τ + l/v0:

E1 = eFV ′
zY (T ) cos(ωT + ψ) , (6)

and the second piece is given by

E2 = e

∫ T

τ

Ey(t)
d

dt
Y (t) dt . (7)

Since we have a constant stream of particles that arrive
at different times τ , these equations must be averaged over
τ . The result is 〈E〉 = 〈E1 + E2〉 (〈〉 means to average over
τ ), and

〈E〉 = − e2l2

2π2mc2
E2

0G(α, β) , (8)

where α = ωβ/ω and G is an analytical function with
many terms (that we do not show here). If 〈E〉 is positive,
then, on average, the beam takes energy from the mode,
and the mode damps; if it is negative, then the beam de-
posits energy into the mode, and the mode can grow. Note
that since the beam cannot lose energy to the transverse
field (it initially has no energy in transverse motion), the
〈E2〉 contribution can only damp the instability.

We finally multiply 〈E〉 by the number of particles en-
tering the gap per unit time per unit width in x, I/we (w
the width of the beam), and divide it by the electromag-
netic energy in the mode W (also per unit width in x),
W = E2

0 lh/(16π). The growth rate in energy of the in-
stability Γ is then

Γ ≈− I

we

〈E〉
W

− ω

Q
, (9)

where we have introduced the quality factor of the mode
Q. The first term in the above equation can be written as

Γ = − 8
π

cl

wh

I

IA
G(α, β) , (10)
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with IA = 17 kA, the Alfvén current.
Finally we should point out two conditions that need to

be satisfied for the validity of our energy balance approach:
(i) |Γ| � ω; we shall see (in the following section) that,
at full current, |Γ| ∼ 1 ns−1, and since ω = 7.6 ns−1 this
condition will be reasonably well satisfied. (ii) A particle’s
transit time across the gap, Δtl, needs to be small com-
pared to 1/|Γ|; for Ek = 115 keV, Δtl = 0.7 ns which
is comparable to 1/|Γ| ∼ 1 ns. The second condition not
being well satisfied may lead to error in the results.

CALCULATIONS

We begin by calculating the growth rate, for the case
of no focusing, as function of beam energy at the nomi-
nal 130 A beam current. We present the results for the
analytical and numerical calculations in Fig. 4 (in all our
calculations we let Q = ∞). We see that there is good
agreement between the curves. For beam energies above
∼ 35 keV, Γ < 0 and the beam is stable. At the nominal
115 keV the damping rate is −Γ = 1 ns−1.

In Fig. 4 we also give results of MAGIC2D, where we
have used a 10 A beam but normalized the growth rate to
130 A. At higher currents, without focusing, it was diffi-
cult to calculate the growth rate because the beam tends to
quickly hit the beam pipe wall. In our calculations, to ob-
tain a clear signal of the desired mode, the structure was
first preloaded with the fields of the TE11-like mode at low
level; then Γ was obtained from the e-folding rate of the
fields. We see that there is good agreement with the energy
balance calculations.
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Figure 4: Growth rate—in energy—as function of beam
energy in the case of no external focusing. Shown are the
analytical, numerical, and MAGIC results.

For focusing the SBK beam, both solenoidal and perma-
nent magnet (PPM) focusing have been considered. In the
case of PPM focusing the magnetic field can be written as

By = −B0 sinh ky cos kz , Bz = B0 coshky sinkz

with Bx = 0 and k = 0.08 mm−1. For our 115 keV beam,
for up to B0 = 1 kG, the parameter α = ωβ/ω is ap-
proximately proportional to the strength of B in both PPM

and solenoid cases, with α = 1.4(B0)PPM = 1.9(Bz)sol,
with B in [kG]. Note that if e.g. (Bz)sol = 400 G, then
ωβ = 5.8 ns−1. In Fig. 5 we plot, for Ek = 115 keV, the
growth rate as function of focusing field Bz , for the ana-
lytical and numerical calculations (again at I = 130 A).
We see that the beam oscillates with Bz and is stable over
most of the range of the plot, and that the analytical and
numerical results agree well.
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Figure 5: Growth rate—in energy—as function of focus-
ing strength, when the beam energy is 115 keV. Shown are
results of the analytical and numerical methods (the lines);
also of MAGIC2D with solenoidal focusing, for I = 10 A
(circles), 65 A (squares), and 130 A (diamonds), all nor-
malized to 130 A.

In Fig. 5 we show, in addition, MAGIC2D (with
solenoidal focusing) results, for beam currents I = 10 A,
65 A, 130 A—all normalized to 130 A (the plotting sym-
bols). At 10 A and 65 A, the results agree reasonably well
with the energy balance calculations. The slight apparent
shift with respect to the curves may be because the MAGIC
simulations used dimensions that were slightly different.
At 130 A the system is less stable, and is, in fact, unstable
forBz � 300 G. The change we see at this current suggests
that current dependent effects that were not included in our
model, e.g. space charge, have become important.

In a SBK other modes are present and the geometry is,
in fact, three dimensional. At least the numerical version
of the energy balance calculations can be easily extended
to include these effects. Including current dependent ef-
fects, such as space charge, or allowing for growth times
that are short compared to the transit time will be more
difficult. Nevertheless, these first calculations suggest that
energy balance-type of calculations—which are quick to
perform—may become useful aids in designing full sheet
beam klystrons in the future.
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