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Abstract

Using a streak camera, we measured the longitudinal
profiles of a positron bunch in the Low Energy Ring (LER)
of KEKB at various currents. The measured charge den-
sities were used to construct a simple Q=1 broadband
impedance model. The model, with three parameters, not
only gave an excellent description of longitudinal dynamics
for positive momentum compaction factor but also for the
negative ones, including bunch shortening below a thresh-
old and bursting modes above the threshold. Furthermore,
our study indicated that the threshold of microwave insta-
bility was about 0.5 mA in bunch current in the LER. At
the nominal operating current 1.0 mA, there was a 20% in-
crease of the energy spread. The results of measurement,
analysis, and simulations will be presented in this paper.

INTRODUCTION

Let’s consider an electron in a storage ring executing a
small synchrotron oscillation in a stationary RF bucket. For
simplicity, we introduce a normalized coordinate system,
q = z/σz and p = −δ/σδ, where z is the differential po-
sition relative to the synchronized particle with energy E0,
δ = (E − E0)/E0, and σz and σδ are the standard de-
viations of position and relative energy in the equilibrium
Gaussian distribution at zero beam current. Here we use
positive q as the forward direction of the beam. It is well
known that the bunch length σz = αcσδ/ωs, where ωs

is the angular frequency of the synchrotron oscillation and
α is the momentum compaction factor. The motion of the
electron is that of a simple harmonic oscillator described by
the Hamiltonian, H = 1

2 (q2 + p2), along with independent
variable θ = ωst.

In general, the electron also experiences a collective
force induced by the bunch distribution λ(q). Using the
notion of an integrated wakefield W (q) in a single turn, the
dynamics can be described by a Hamiltonian

H =
1
2
(q2 + p2) − In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′λ(q′)W (q′′ − q′),

where

In =
reNb

2πνsγσδ
(1)

is the normalized current, which was introduced by Oide
and Yokoya [1], Nb represents the number of electrons in
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the bunch, νs is the synchrotron tune, re is the classic radius
of electron, and γ = E0/mc2. Here, the bunch distribution
λ(q) has been normalized, namely

∫ ∞
−∞ λ(q)dq = 1.

It is worth noting that the dynamics effect of the wake-
field is scaled by the normalized current In. Its dependence
on the parameters in Eq. (1) clearly shows that we prefer a
higher energy, faster synchrotron oscillation, or larger rel-
ative energy spread to reduce the effects of the wakefield.
Although, it does not explicitly depend on the momentum
compaction factor α, for a negative α < 0, one needs to
use a negative normalized current as well, namely In < 0.
Moreover, if W(q) is given in terms of V/pC, one should
convert In from meter to pC/V.

Furthermore, it can be shown that the evolution of beam
density distribution Ψ(q, p) is governed by the Vlasov-
Fokker-Planck (VFP) equation

∂Ψ
∂θ

− {H, Ψ}PB = 2β
∂

∂p
(pΨ +

∂Ψ
∂p

), (2)

where β = 1/ωsτd and τd is the longitudinal damping time.
We use the subscript PB to indicate the Poisson Bracket.
Actually, H is the Hamiltonian defined previously with the
substitution of λ(q) =

∫ ∞
−∞ Ψ(q, p)dp. As a result, the

VFP equation is a nonlinear integral and partial differential
equation. In general, it can only be solved by numerical
methods [2]. In fact, it is a special form of the Fokker-
Planck equation since the damping and diffusion terms on
the right-hand side involve only the partial derivatives of p.
This is a consequence of the fact that the synchrotron radi-
ation causes loss and quantum diffusion only in the energy
of the radiating electron not in its time of flight.

HAISSINSKI SOLUTIONS

Historically, it was Haissinski who discovered that the
VFP equation (Eq. 2) has a static solution in the form of [3]

Ψ0(q, p) =
1

κ
√

2π
exp(−H0)

= λ0(q) exp(−p2

2
)/
√

2π (3)

Here the subscript “0” indicates that the solution does not
explicitly depend on θ or ∂Ψ/∂θ = 0. Since Ψ0 is a func-
tion of the Hamiltonian H0 only, it commutes with H0 in
the Poisson Bracket; therefore the right hand side of the
equation vanishes by itself.

On the other hand, Ψ0 is also factorized into a product
of a Gaussian distribution in p and λ0(q), which makes the
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right hand side of the equation vanish separately. Eliminat-
ing the dependence of p in Eq. (3), we find the well-known
Haissinski integral equation

λ0(q) = exp[−q2

2
+ In

∫ ∞

−∞
dq′λ0(q′)S(q − q′)]/κ, (4)

where S(q) =
∫ q

−∞ W (q′)dq′ and κ is a constant deter-

mined by the normalization condition,
∫ ∞
−∞ λ0(q)dq = 1.

At zero current, In = 0, so the solution becomes a Gaus-
sian. In general, this nonlinear integral equation can be
solved numerically using Newton’s Iteration starting from
the Gaussian distribution. In practice, we know that the
Haissinski distribution is not just a possible solution but
also the equilibrium distribution of the VFP equation at
a sufficiently low current. Above a threshold of In, the
Haissinski distribution is no longer a stable solution. In the
literature, the associated instability is commonly referred
to as the microwave instability.

SIMULATION

The VFP equation can be solved [2] using a two-
dimensional grid to represent the distribution in phase
space. Motivated by the necessity to extend the simulation
to six-dimensional phase space in the future, we introduce
macro particles to represent the phase-space distribution

Ψ(q, p) =
1

Np

Np∑
i=1

δ(q − qi)δ(p − pi), (5)

where qi, pi are the canonical coordinates of the particles so
that the evolution of Ψ(q, p) can be carried out by tracking
the particles.

For each step of Δθ, we use three integration steps based
on the technique of splitting operators. First, we apply a
kick generated by the wakefield W (q)

Δpi = In

∫ ∞

−∞
dq′λ(q′)W (qi − q′)Δθ. (6)

To speed up the calculation, we deposit the charge of every
particle onto two adjacent grid points with a linear weight-
ing to accumulate λ(q) on a one-dimensional mesh. The
integration is replaced by a summation over the grid and
the kicks on all the grid points are calculated and stored.
For the kick on the particle, we use a linear interpolation
of kicks on the two adjacent grids. In the second step, we
simply have a rotation

qi = cos(Δθ)qi + sin(Δθ)pi,

pi = − sin(Δθ)qi + cos(Δθ)pi, (7)

which is a solution of the free harmonic oscillator. In the
final step, we apply the radiation damping and quantum
excitation

Δpi = −2βpiΔθ +
√

12βΔθξ(i), (8)

where ξ is a random number generated by a uniform distri-
bution between -1 to 1. As an example shown in Fig. 1, we
make a direct comparison between the VFP solver[2] and
our PIC simulation. One can see from the figure that there
is not much difference and both give a good description of
the saw-tooth instability including its periodicity.
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Figure 1: A comparison between VFP and PIC codes using
the impedance of the SLC damping ring [4]. The number
of macro particles is chosen to be the same as the number
of grid points in the VFP solver.

IMPEDANCE MODEL

In general, one needs to collect all possible impedance
sources, such as bellows, masks, and collimators, and cal-
culate their impedance, and construct a wakefield W (q) by
adding up all contributions in the entire storage ring. For
simplicity, we choose the Q=1 broadband resonance as our
impedance model.

For a parallel LRC circuit, the non-vanishing wakefield,
for q < 0, is given by

W (q) = w0[cos(Aq) + sin(Aq)/
√

4Q2 − 1] exp(xrq/2Q),

where A = xr

√
1 − 1/4Q2 and xr = ωrσz/c. One

can easily convert three dynamical parameters Q, xr, w0 to
their engineering counterparts L, R, C by using

L = w0(σz/xrc)2, (9)

R = Qw0(σz/xrc), (10)

C = 1/w0. (11)

It has been known from previous work by Ieiri and
Koiso that the LER, like many modern storage rings, was
rather inductive. By fitting to a pure inductance impedance
model, they found that its inductance L = 96 nH. These in-
ductances more or less fix another parameter in the broad-
band model. However, there is still a tradeoff between xr

and w0 to be made according to Eq. (9). The necessary in-
formation is provided by the measurement of the positron
beam profiles using a streak camera. The data is shown in
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the top plot of Fig. 2. It is clear that the measured shapes
are essentially Gaussians; we have to choose xr ≥ 2 to
avoid a shoulder in the distributions at high currents. In the
bottom plot of Fig. 2, we show the Haissinski distributions
times the beam currents at the corresponding currents.
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Figure 2: Comparisons of bunch profiles of the measure-
ment using a streak camera and products of the Haissinski
distributions and the corresponding beam currents.

The final selection of the parameters xr and w0 are ac-
tually made using a compromise between the fitting to the
measured bunch lengths shown in Fig. 3 and the matching
to the beam profiles. We settle on the values of xr = 3
and w0 = 5 × 105m−1, which correspond to L = 116 nH,
R = 22.9 KΩ, and C = 0.22 fF. The results of the fitting
to the measurements are shown in the plots of Fig. 3. Note
that the PIC simulations are necessary to fit the measured
bunch lengths.

For positive α, as one can see in Fig. 3 the simulated dis-
tributions start to deviate from the Haissinski distributions
beyond the value of 0.5 mA of the bunch current. Accord-
ing to the theory of microwave instability, the threshold is
Ith = 0.5mA. At the operating current of 1.0 mA, we have
a 20% increase of energy spread in the simulation.

One pleasant surprise is that the impedance model also
gives good agreement with the measurement when α
switches to its negative value as shown in Fig. 3. Inciden-
tally, its threshold of microwave instability is also at 0.5
mA. Slightly above the threshold, at Ib = 0.6 mA, we see
a bursting mode in the simulation, which was consistent
with the observation.
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Figure 3: Measurements of bunch length compared to sim-
ulations and Haissinski solutions for both positive α =
3.4× 10−4 (top) and negative α = −3.4× 10−4 (bottom).

CONCLUSION

Our study of the microwave instability was remarkably
successful. We have shown that the simple broadband
impedance models enabled us to explain many measure-
ments and observations including the bunch shortening and
lengthening, the shapes of beam profiles at various beam
currents, and the thresholds of microwave instability and
the bursting modes. Most important is the fact that the pre-
diction of the growth of the energy spread was confirmed
by a measurement [5] using the particle detector Belle.
The success can be attributed to several advances we have
made. First, we found that it is critical to use the results of
the simulation to fit the measured bunch length because the
microwave instability contributes additional lengthening to
the Haissinski solutions. Second, we learned that shapes of
the distributions are essential to narrow down the type of
impedances.
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