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FOUR REGIMES OF THE IFR ION HOSE INSTABILITY*
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3731 Schneider Dr., Stoughton, WI 53589, U.S.A.

Abstract

An electron beam focused by an ion channel without a
magnetic field, in the so-called ion focus regime (IFR),
may be disrupted by the transverse ion hose instability.
We describe the growth in four regimes.

INTRODUCTION

Propagation of an electron beam focused by a
preformed ion channel may be disrupted by the ion hose
instability [1-3]. In the rigid-beam model [1]

d’bldt* =—0?(b—c), d’cldt* =—0?(c—b), (1)
where b(z,t) is the beam displacement, c(z,¢) is the
channel displacement, z is axial location, ¢ is time,
db/dt=0b/dt+vob/dz and dc/dt=9dc/dt where v is
the beam velocity, while ®, and ®; are the electron
betatron frequency and the ion bounce frequency.

Equation (1) describes an absolute instability, while the
ion hose instability is actually a convective instability
where a growing disturbance moves downstream and
towards the tail of the beam [2]. This may be remedied
by considering distributions of betatron and bounce
frequencies [2]. We model Cauchy (also called
Lorentzian) distributions with half-widths o, and o,

whose frequency spreads give exponential decoherence of

centroid oscillations approximated by linear damping [4]
d*bfdt* =-o?(b—c)-20., db/dt, o
d’c/di* = -} (c—b)-2a, dc/d.

Equation (2) also describes the electron hose instability
of an electron beam that expels ions from uniform plasma
[5, 6], the beam breakup (BBU) instability when the
parameter s; =1 [7], and the e— p instability of a proton
beam in a channel of electrons [8]. We model realistic
damping with o, /o, =o; /®; =0.1 [8].

DISPERSION RELATION
A disturbance that is dominated by a single frequency is
described by the dispersion relation. For the ansatz
b(z,0) = by c(z,1) = e’ ® ™, we can solve Eq.
(2) for Q=wm— vk as a function of ®, or vice versa
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For a growing disturbance dominated by w=®;, solving

for Q gives the spatial growth rate and group velocity
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For a growing disturbance dominated by Q =, , solving

for @ gives the temporal growth rate and group velocity
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IMPULSE RESPONSE

In terms of betatron phase Z =w,z/v and ion bounce
phase &=, (t—z/v), Eq. (2) with an impulse becomes
32b/0Z* =—(b—c)—24, 0b/dZ +3(Z)S(E),
92¢/0E? = —(c—b)—24, dc/IE,

where 4,=0,/0, and 4 =0;/®;. For a beam whose

(6)

head is at £=0 that enters an ion channel at Z =0,
b(Z,&) is the response to an impulsive force applied to

the head of the beam at the entrance of the channel. For
underdamped electron and ion oscillations with
A,,4; <1, the solution to Eq. (6) for an immobile ion

channel with ¢(Z,£) =0 is [9]

bo(Z,8) = §(E)e ** sin(Z 1- 42 ) / J1-A42. (7)

For mobile ions, the solution is the sum of Eq. (7) and [9]
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A similar formula describes the mobile ions [9]. For a

pulse length of &/2m ion bounce periods, Ab(Z,E) is the
tail offset after propagating Z/2n betatron wavelengths.
To approximate Eq. (8), we use the small and large
argument approximations: J, (x)=[T(v+1)]"(x/2)" for
x<<V, Jy(x)~(2/mx)""? cos(x—vn/2—-n/4) for x >>v
[10], and an approximation of the gamma function:
T(n+1)=2nn""2e™ for n>>1.
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Short Propagation Distance of a Short Pulse
For Z,E<<1, the sum in Eq. (8) is dominated by the first

term. Applying the small-argument approximation to the
Bessel functions gives the non-oscillating result

AN(Z,E)=EZ7 /6. )
Short Pulse

For £<<Z, the pulse length (measured in ion bounce
phase) is much shorter than the propagation distance
(measured in electron betatron phase). For 23713 >>1,

Eq. (8) is dominated by terms with & <<k << Z, where
the  small-argument

Ji1)2(Ey1-4%) and the large-argument approximation

Jen2(ZA1-47). Applying
approximations to all of the terms and using complex
notation where the real part gives the physical
disturbance, we have
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Using kl=2m k5 2™ | (k=1)1=kl/k =2m k"2
and T(k+1/2) =\2m k*e™ gives K (k-1)T(k+1/2)
~(2n/3** )Lk +1/2), which yields

1/6
—A,Z _~AE iZ\1-A4] -2/3
aniz -2 N g (22]
2 1-4 241-4
n e e (11)

2/3 1/3 .
é) z 8
/Zl"(3k+l/2) (2 i) -

The sum in Eq. (11) approximates every third term of the
Taylor series for an exponential, so that

approximation  applies  to

applies  to these

AN(Z.E) =
(10)

AeZe A&
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Ab(Z,8) =

G

Xe e’,

where for a short pulse

G- (3J§/4)§2/3(z/,/1—A§j1/3 (13)

is the exponential growth factor. This factor has been
previously obtained when damping is neglected [2, 3],
and corresponds to BBU growth type C of Ref. [7]. The
additional exponential factor —4,z — 4, gives damping.

For a given value of & (a slice of the beam), the

envelope |Ab(Z,E)| peaks where Z=~0.2858/42'%. The
peak’s velocity and temporal growth rate are
vi[l+0? /0.285m,0)%)] and 0.570,0%a;"* -a,,
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Figure 1: The impulse response function and the short-
pulse approximation of Eq. (12), valid for §<<Z.

(a) E=2n=628. (b) Z=20m=6238.

approximately given by Eq. (§) for Q=0,.
Figure 1 displays the oscillating impulse response for a
short pulse and its approximation by Eq. (12).

Long Pulse

For Z << &, the pulse length (measured in ion bounce
phase) is much longer than the propagation distance
(measured in betatron phase). For Z*/3¢!3 >>1, Eq. (8)
is dominated by terms with Z << k << &, where the large-
and  small-argument  approximations apply to
i Ey1=47) and J,,,,,(Zy/1-42), respectively.
Approximating all terms, using complex notation and
K'(k=DIT(k+3/2) ~ (2n/3**"\T(3k +3/2) , we have
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The sum in Eq. (14) approximates
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where for a long pulse

G- ) 2 ae

This factor has been previously obtained when damping is
neglected [5, 6], giving BBU growth type A of Ref. [7].
For a given value of Z (axial location), |Ab(Z,E)|

peaks where &~ 0.285Z/47'%.

AB(Z,E) =

The peak’s velocity and
weco}/z/ocf/z) and

oci’” 2/ v—o,/v, approximated by Eq. (4) for

spatial growth rate are v/(1+.285
0.57coeco§/2
0=0;.

The impulse response for a long pulse and its
approximation by Eq. (15) are shown in Fig. 2.
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Figure 2: The impulse response function and the long-
pulse approximation of Eq. (15), valid for Z<<§&.

(a) £E=20m=62.8. (b) Z=2m=6.28.

Medium Pulse Length

For Z ~&>>1, the propagation distance (measured in
electron betatron phase) is comparable to the pulse length
(measured in ion bounce phase). For Z'28!2 >>1, Eq.
(8) is dominated by terms with k~&/2~Z/2, where
the  large-argument  approximation  applies  to
Ji 2 E1=42) and J,,,,,(Zy1-42). Approximating
all terms, using complex notation and
K(k-1)!= («/5/22" )W (2k+1/2) gives
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The growing term that dominates Eq. (18) is

42 4 ‘ -3/4
ar 1= 2 1= 42 | 241 42 (19)
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Ab(Z,8) =

(18)

Ab(Z,8) =
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Figure 3: The impulse response function and the medium-
pulse approximation of Eq. (19), valid for Z ~&>>1.

(a) E=6n=18.85. (b)Z=6m=18.85.

where in the case of medium pulse length, the growth

factor is
1/2 1/2
:(g/wh—Afj (z/,/l—Ajj . (20)
This growth factor describes BBU growth when

s, =s, =1 in the notation of Ref. [7].

Figure 3 shows the impulse function in the medium-
pulse-length regime and its approximation by Eq. (19).
For Z ~&>>1, Eq. (19) provides a good approximation.

SUMMARY

The asymptotic growth of the IFR ion hose instability
has been obtained in four regimes, including the well-
known short-pulse and long-pulse regimes. We also
found growth for a short pulse that is propagated for a
short distance, and the asymptotic growth in the medium-
pulse-length regime where the number of electron
betatron oscillations during the beam’s propagation is
comparable to the number of ion oscillations during the
beam’s passage.
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